langchain/tests/unit_tests/agents/test_tools.py
Zander Chase da7b51455c
Dynamic tool -> single purpose (#3697)
I think the logic of
https://github.com/hwchase17/langchain/pull/3684#pullrequestreview-1405358565
is too confusing.

I prefer this alternative because:
- All `Tool()` implementations by default will be treated the same as
before. No breaking changes.
- Less reliance on pydantic magic
- The decorator (which only is typed as returning a callable) can infer
schema and generate a structured tool
- Either way, the recommended way to create a custom tool is through
inheriting from the base tool
2023-04-28 09:38:41 -07:00

447 lines
14 KiB
Python

"""Test tool utils."""
from datetime import datetime
from functools import partial
from typing import Any, Optional, Type, Union
from unittest.mock import MagicMock
import pydantic
import pytest
from pydantic import BaseModel
from langchain.agents.agent import Agent
from langchain.agents.chat.base import ChatAgent
from langchain.agents.conversational.base import ConversationalAgent
from langchain.agents.conversational_chat.base import ConversationalChatAgent
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.react.base import ReActDocstoreAgent, ReActTextWorldAgent
from langchain.agents.self_ask_with_search.base import SelfAskWithSearchAgent
from langchain.agents.tools import Tool, tool
from langchain.tools.base import BaseTool, SchemaAnnotationError, StructuredTool
def test_unnamed_decorator() -> None:
"""Test functionality with unnamed decorator."""
@tool
def search_api(query: str) -> str:
"""Search the API for the query."""
return "API result"
assert isinstance(search_api, BaseTool)
assert search_api.name == "search_api"
assert not search_api.return_direct
assert search_api("test") == "API result"
class _MockSchema(BaseModel):
arg1: int
arg2: bool
arg3: Optional[dict] = None
class _MockStructuredTool(BaseTool):
name = "structured_api"
args_schema: Type[BaseModel] = _MockSchema
description = "A Structured Tool"
def _run(self, arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str:
return f"{arg1} {arg2} {arg3}"
async def _arun(self, arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str:
raise NotImplementedError
def test_structured_args() -> None:
"""Test functionality with structured arguments."""
structured_api = _MockStructuredTool()
assert isinstance(structured_api, BaseTool)
assert structured_api.name == "structured_api"
expected_result = "1 True {'foo': 'bar'}"
args = {"arg1": 1, "arg2": True, "arg3": {"foo": "bar"}}
assert structured_api.run(args) == expected_result
def test_unannotated_base_tool_raises_error() -> None:
"""Test that a BaseTool without type hints raises an exception.""" ""
with pytest.raises(SchemaAnnotationError):
class _UnAnnotatedTool(BaseTool):
name = "structured_api"
# This would silently be ignored without the custom metaclass
args_schema = _MockSchema
description = "A Structured Tool"
def _run(self, arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str:
return f"{arg1} {arg2} {arg3}"
async def _arun(
self, arg1: int, arg2: bool, arg3: Optional[dict] = None
) -> str:
raise NotImplementedError
def test_misannotated_base_tool_raises_error() -> None:
"""Test that a BaseTool with the incorrrect typehint raises an exception.""" ""
with pytest.raises(SchemaAnnotationError):
class _MisAnnotatedTool(BaseTool):
name = "structured_api"
# This would silently be ignored without the custom metaclass
args_schema: BaseModel = _MockSchema # type: ignore
description = "A Structured Tool"
def _run(self, arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str:
return f"{arg1} {arg2} {arg3}"
async def _arun(
self, arg1: int, arg2: bool, arg3: Optional[dict] = None
) -> str:
raise NotImplementedError
def test_forward_ref_annotated_base_tool_accepted() -> None:
"""Test that a using forward ref annotation syntax is accepted.""" ""
class _ForwardRefAnnotatedTool(BaseTool):
name = "structured_api"
args_schema: "Type[BaseModel]" = _MockSchema
description = "A Structured Tool"
def _run(self, arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str:
return f"{arg1} {arg2} {arg3}"
async def _arun(
self, arg1: int, arg2: bool, arg3: Optional[dict] = None
) -> str:
raise NotImplementedError
def test_subclass_annotated_base_tool_accepted() -> None:
"""Test BaseTool child w/ custom schema isn't overwritten."""
class _ForwardRefAnnotatedTool(BaseTool):
name = "structured_api"
args_schema: Type[_MockSchema] = _MockSchema
description = "A Structured Tool"
def _run(self, arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str:
return f"{arg1} {arg2} {arg3}"
async def _arun(
self, arg1: int, arg2: bool, arg3: Optional[dict] = None
) -> str:
raise NotImplementedError
assert issubclass(_ForwardRefAnnotatedTool, BaseTool)
tool = _ForwardRefAnnotatedTool()
assert tool.args_schema == _MockSchema
def test_decorator_with_specified_schema() -> None:
"""Test that manually specified schemata are passed through to the tool."""
@tool(args_schema=_MockSchema)
def tool_func(arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str:
"""Return the arguments directly."""
return f"{arg1} {arg2} {arg3}"
assert isinstance(tool_func, BaseTool)
assert tool_func.args_schema == _MockSchema
def test_decorated_function_schema_equivalent() -> None:
"""Test that a BaseTool without a schema meets expectations."""
@tool
def structured_tool_input(
arg1: int, arg2: bool, arg3: Optional[dict] = None
) -> str:
"""Return the arguments directly."""
return f"{arg1} {arg2} {arg3}"
assert isinstance(structured_tool_input, BaseTool)
assert structured_tool_input.args_schema is not None
assert (
structured_tool_input.args_schema.schema()["properties"]
== _MockSchema.schema()["properties"]
== structured_tool_input.args
)
def test_structured_args_decorator_no_infer_schema() -> None:
"""Test functionality with structured arguments parsed as a decorator."""
@tool
def structured_tool_input(
arg1: int, arg2: Union[float, datetime], opt_arg: Optional[dict] = None
) -> str:
"""Return the arguments directly."""
return f"{arg1}, {arg2}, {opt_arg}"
assert isinstance(structured_tool_input, BaseTool)
assert structured_tool_input.name == "structured_tool_input"
args = {"arg1": 1, "arg2": 0.001, "opt_arg": {"foo": "bar"}}
expected_result = "1, 0.001, {'foo': 'bar'}"
assert structured_tool_input.run(args) == expected_result
def test_structured_single_str_decorator_no_infer_schema() -> None:
"""Test functionality with structured arguments parsed as a decorator."""
@tool(infer_schema=False)
def unstructured_tool_input(tool_input: str) -> str:
"""Return the arguments directly."""
return f"{tool_input}"
assert isinstance(unstructured_tool_input, BaseTool)
assert unstructured_tool_input.args_schema is None
assert unstructured_tool_input.run("foo") == "foo"
def test_base_tool_inheritance_base_schema() -> None:
"""Test schema is correctly inferred when inheriting from BaseTool."""
class _MockSimpleTool(BaseTool):
name = "simple_tool"
description = "A Simple Tool"
def _run(self, tool_input: str) -> str:
return f"{tool_input}"
async def _arun(self, tool_input: str) -> str:
raise NotImplementedError
simple_tool = _MockSimpleTool()
assert simple_tool.args_schema is None
expected_args = {"tool_input": {"title": "Tool Input", "type": "string"}}
assert simple_tool.args == expected_args
def test_tool_lambda_args_schema() -> None:
"""Test args schema inference when the tool argument is a lambda function."""
tool = Tool(
name="tool",
description="A tool",
func=lambda tool_input: tool_input,
)
assert tool.args_schema is None
expected_args = {"tool_input": {"type": "string"}}
assert tool.args == expected_args
def test_structured_tool_lambda_multi_args_schema() -> None:
"""Test args schema inference when the tool argument is a lambda function."""
tool = StructuredTool.from_function(
name="tool",
description="A tool",
func=lambda tool_input, other_arg: f"{tool_input}{other_arg}", # type: ignore
)
assert tool.args_schema is not None
expected_args = {
"tool_input": {"title": "Tool Input"},
"other_arg": {"title": "Other Arg"},
}
assert tool.args == expected_args
def test_tool_partial_function_args_schema() -> None:
"""Test args schema inference when the tool argument is a partial function."""
def func(tool_input: str, other_arg: str) -> str:
return tool_input + other_arg
with pytest.raises(pydantic.error_wrappers.ValidationError):
# We don't yet support args_schema inference for partial functions
# so want to make sure we proactively raise an error
Tool(
name="tool",
description="A tool",
func=partial(func, other_arg="foo"),
)
def test_empty_args_decorator() -> None:
"""Test inferred schema of decorated fn with no args."""
@tool
def empty_tool_input() -> str:
"""Return a constant."""
return "the empty result"
assert isinstance(empty_tool_input, BaseTool)
assert empty_tool_input.name == "empty_tool_input"
assert empty_tool_input.args == {}
assert empty_tool_input.run({}) == "the empty result"
def test_named_tool_decorator() -> None:
"""Test functionality when arguments are provided as input to decorator."""
@tool("search")
def search_api(query: str) -> str:
"""Search the API for the query."""
return "API result"
assert isinstance(search_api, BaseTool)
assert search_api.name == "search"
assert not search_api.return_direct
def test_named_tool_decorator_return_direct() -> None:
"""Test functionality when arguments and return direct are provided as input."""
@tool("search", return_direct=True)
def search_api(query: str) -> str:
"""Search the API for the query."""
return "API result"
assert isinstance(search_api, BaseTool)
assert search_api.name == "search"
assert search_api.return_direct
def test_unnamed_tool_decorator_return_direct() -> None:
"""Test functionality when only return direct is provided."""
@tool(return_direct=True)
def search_api(query: str) -> str:
"""Search the API for the query."""
return "API result"
assert isinstance(search_api, BaseTool)
assert search_api.name == "search_api"
assert search_api.return_direct
def test_tool_with_kwargs() -> None:
"""Test functionality when only return direct is provided."""
@tool(return_direct=True)
def search_api(
arg_0: str,
arg_1: float = 4.3,
ping: str = "hi",
) -> str:
"""Search the API for the query."""
return f"arg_0={arg_0}, arg_1={arg_1}, ping={ping}"
assert isinstance(search_api, BaseTool)
result = search_api.run(
tool_input={
"arg_0": "foo",
"arg_1": 3.2,
"ping": "pong",
}
)
assert result == "arg_0=foo, arg_1=3.2, ping=pong"
result = search_api.run(
tool_input={
"arg_0": "foo",
}
)
assert result == "arg_0=foo, arg_1=4.3, ping=hi"
# For backwards compatibility, we still accept a single str arg
result = search_api.run("foobar")
assert result == "arg_0=foobar, arg_1=4.3, ping=hi"
def test_missing_docstring() -> None:
"""Test error is raised when docstring is missing."""
# expect to throw a value error if theres no docstring
with pytest.raises(AssertionError, match="Function must have a docstring"):
@tool
def search_api(query: str) -> str:
return "API result"
def test_create_tool_positional_args() -> None:
"""Test that positional arguments are allowed."""
test_tool = Tool("test_name", lambda x: x, "test_description")
assert test_tool("foo") == "foo"
assert test_tool.name == "test_name"
assert test_tool.description == "test_description"
assert test_tool.is_single_input
def test_create_tool_keyword_args() -> None:
"""Test that keyword arguments are allowed."""
test_tool = Tool(name="test_name", func=lambda x: x, description="test_description")
assert test_tool.is_single_input
assert test_tool("foo") == "foo"
assert test_tool.name == "test_name"
assert test_tool.description == "test_description"
@pytest.mark.asyncio
async def test_create_async_tool() -> None:
"""Test that async tools are allowed."""
async def _test_func(x: str) -> str:
return x
test_tool = Tool(
name="test_name",
func=lambda x: x,
description="test_description",
coroutine=_test_func,
)
assert test_tool.is_single_input
assert test_tool("foo") == "foo"
assert test_tool.name == "test_name"
assert test_tool.description == "test_description"
assert test_tool.coroutine is not None
assert await test_tool.arun("foo") == "foo"
@pytest.mark.parametrize(
"agent_cls",
[
ChatAgent,
ZeroShotAgent,
ConversationalChatAgent,
ConversationalAgent,
ReActDocstoreAgent,
ReActTextWorldAgent,
SelfAskWithSearchAgent,
],
)
def test_single_input_agent_raises_error_on_structured_tool(
agent_cls: Type[Agent],
) -> None:
"""Test that older agents raise errors on older tools."""
@tool
def the_tool(foo: str, bar: str) -> str:
"""Return the concat of foo and bar."""
return foo + bar
with pytest.raises(
ValueError,
match=f"{agent_cls.__name__} does not support" # type: ignore
f" multi-input tool {the_tool.name}.",
):
agent_cls.from_llm_and_tools(MagicMock(), [the_tool]) # type: ignore
def test_tool_no_args_specified_assumes_str() -> None:
"""Older tools could assume *args and **kwargs were passed in."""
def ambiguous_function(*args: Any, **kwargs: Any) -> str:
"""An ambiguously defined function."""
return args[0]
some_tool = Tool(
name="chain_run",
description="Run the chain",
func=ambiguous_function,
)
expected_args = {"tool_input": {"type": "string"}}
assert some_tool.args == expected_args
assert some_tool.run("foobar") == "foobar"
assert some_tool.run({"tool_input": "foobar"}) == "foobar"
with pytest.raises(ValueError, match="Too many arguments to single-input tool"):
some_tool.run({"tool_input": "foobar", "other_input": "bar"})