langchain/docs/modules/models/llms/integrations/gooseai_example.ipynb
leo-gan 5420a0e404
updated langchain/docs/modules/models/llms/integrations/ notebooks (#3041)
- Updated `langchain/docs/modules/models/llms/integrations/` notebooks:
added links to the original sites, the install information, etc.
- Added the `nlpcloud` notebook.
- Removed "Example" from Titles of some notebooks, so all notebook
titles are consistent.
2023-04-17 20:25:32 -07:00

178 lines
3.7 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# GooseAI\n",
"\n",
"`GooseAI` is a fully managed NLP-as-a-Service, delivered via API. GooseAI provides access to [these models](https://goose.ai/docs/models).\n",
"\n",
"This notebook goes over how to use Langchain with [GooseAI](https://goose.ai/).\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Install openai\n",
"The `openai` package is required to use the GooseAI API. Install `openai` using `pip3 install openai`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$ pip3 install openai"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from langchain.llms import GooseAI\n",
"from langchain import PromptTemplate, LLMChain"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set the Environment API Key\n",
"Make sure to get your API key from GooseAI. You are given $10 in free credits to test different models."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from getpass import getpass\n",
"\n",
"GOOSEAI_API_KEY = getpass()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"os.environ[\"GOOSEAI_API_KEY\"] = GOOSEAI_API_KEY"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create the GooseAI instance\n",
"You can specify different parameters such as the model name, max tokens generated, temperature, etc."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm = GooseAI()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a Prompt Template\n",
"We will create a prompt template for Question and Answer."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"template = \"\"\"Question: {question}\n",
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initiate the LLMChain"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Run the LLMChain\n",
"Provide a question and run the LLMChain."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
"\n",
"llm_chain.run(question)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"vscode": {
"interpreter": {
"hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}