langchain/docs/modules/indexes/text_splitters/examples/markdown.ipynb
Leonid Ganeline c998569c8f
docs: text splitters improvements (#4490)
#docs: text splitters improvements

Changes are only in the Jupyter notebooks.
- added links to the source packages and a short description of these
packages
- removed " Text Splitters" suffixes from the TOC elements (they made
the list of the text splitters messy)
- moved text splitters, based on the length function into a separate
list. They can be mixed with any classes from the "Text Splitters", so
it is a different classification.

## Who can review?
        @hwchase17 - project lead
        @eyurtsev
        @vowelparrot

NOTE: please, check out the results of the `Python code` text splitter
example (text_splitters/examples/python.ipynb). It looks suboptimal.
2023-05-17 21:33:34 -07:00

154 lines
3.9 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "80f6cd99",
"metadata": {},
"source": [
"# Markdown\n",
"\n",
">[Markdown](https://en.wikipedia.org/wiki/Markdown) is a lightweight markup language for creating formatted text using a plain-text editor.\n",
"\n",
"`MarkdownTextSplitter` splits text along Markdown headings, code blocks, or horizontal rules. It's implemented as a simple subclass of `RecursiveCharacterSplitter` with Markdown-specific separators. See the source code to see the Markdown syntax expected by default.\n",
"\n",
"1. How the text is split: by list of `markdown` specific separators\n",
"2. How the chunk size is measured: by number of characters"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "96d64839",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.text_splitter import MarkdownTextSplitter"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "cfb0da17",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"markdown_text = \"\"\"\n",
"# 🦜️🔗 LangChain\n",
"\n",
"⚡ Building applications with LLMs through composability ⚡\n",
"\n",
"## Quick Install\n",
"\n",
"```bash\n",
"# Hopefully this code block isn't split\n",
"pip install langchain\n",
"```\n",
"\n",
"As an open source project in a rapidly developing field, we are extremely open to contributions.\n",
"\"\"\"\n",
"markdown_splitter = MarkdownTextSplitter(chunk_size=100, chunk_overlap=0)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "d59a4fe8",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"docs = markdown_splitter.create_documents([markdown_text])"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "cbb2e100",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='# 🦜️🔗 LangChain\\n\\n⚡ Building applications with LLMs through composability ⚡', metadata={}),\n",
" Document(page_content=\"Quick Install\\n\\n```bash\\n# Hopefully this code block isn't split\\npip install langchain\", metadata={}),\n",
" Document(page_content='As an open source project in a rapidly developing field, we are extremely open to contributions.', metadata={})]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"docs"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "91b56e7e-b285-4ca4-a786-149544e0e3c6",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"['# 🦜️🔗 LangChain\\n\\n⚡ Building applications with LLMs through composability ⚡',\n",
" \"Quick Install\\n\\n```bash\\n# Hopefully this code block isn't split\\npip install langchain\",\n",
" 'As an open source project in a rapidly developing field, we are extremely open to contributions.']"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"markdown_splitter.split_text(markdown_text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9bee7858-9175-4d99-bd30-68f2dece8601",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"vscode": {
"interpreter": {
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}