forked from Archives/langchain
51 lines
1.5 KiB
Python
51 lines
1.5 KiB
Python
"""Unit tests for agents."""
|
|
|
|
from typing import Any, List, Mapping, Optional
|
|
|
|
from pydantic import BaseModel
|
|
|
|
from langchain.agents import Tool, initialize_agent
|
|
from langchain.llms.base import LLM
|
|
|
|
|
|
class FakeListLLM(LLM, BaseModel):
|
|
"""Fake LLM for testing that outputs elements of a list."""
|
|
|
|
responses: List[str]
|
|
i: int = -1
|
|
|
|
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
|
"""Increment counter, and then return response in that index."""
|
|
self.i += 1
|
|
print(self.i)
|
|
print(self.responses)
|
|
return self.responses[self.i]
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
return {}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "fake_list"
|
|
|
|
|
|
def test_agent_bad_action() -> None:
|
|
"""Test react chain when bad action given."""
|
|
bad_action_name = "BadAction"
|
|
responses = [
|
|
f"I'm turning evil\nAction: {bad_action_name}\nAction Input: misalignment",
|
|
"Oh well\nAction: Final Answer\nAction Input: curses foiled again",
|
|
]
|
|
fake_llm = FakeListLLM(responses=responses)
|
|
tools = [
|
|
Tool("Search", lambda x: x, "Useful for searching"),
|
|
Tool("Lookup", lambda x: x, "Useful for looking up things in a table"),
|
|
]
|
|
agent = initialize_agent(
|
|
tools, fake_llm, agent="zero-shot-react-description", verbose=True
|
|
)
|
|
output = agent.run("when was langchain made")
|
|
assert output == "curses foiled again"
|