forked from Archives/langchain
8a95fdaee1
Fix all the example in the docs when init `Tool` Test by render with jupyter
132 lines
3.5 KiB
Plaintext
132 lines
3.5 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "991b1cc1",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Loading from LangChainHub\n",
|
|
"\n",
|
|
"This notebook covers how to load agents from [LangChainHub](https://github.com/hwchase17/langchain-hub)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "bd4450a2",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"No `_type` key found, defaulting to `prompt`.\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\n",
|
|
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
|
|
"\u001B[32;1m\u001B[1;3m Yes.\n",
|
|
"Follow up: Who is the reigning men's U.S. Open champion?\u001B[0m\n",
|
|
"Intermediate answer: \u001B[36;1m\u001B[1;3m2016 · SUI · Stan Wawrinka ; 2017 · ESP · Rafael Nadal ; 2018 · SRB · Novak Djokovic ; 2019 · ESP · Rafael Nadal.\u001B[0m\n",
|
|
"\u001B[32;1m\u001B[1;3mSo the reigning men's U.S. Open champion is Rafael Nadal.\n",
|
|
"Follow up: What is Rafael Nadal's hometown?\u001B[0m\n",
|
|
"Intermediate answer: \u001B[36;1m\u001B[1;3mIn 2016, he once again showed his deep ties to Mallorca and opened the Rafa Nadal Academy in his hometown of Manacor.\u001B[0m\n",
|
|
"\u001B[32;1m\u001B[1;3mSo the final answer is: Manacor, Mallorca, Spain.\u001B[0m\n",
|
|
"\n",
|
|
"\u001B[1m> Finished chain.\u001B[0m\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'Manacor, Mallorca, Spain.'"
|
|
]
|
|
},
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"from langchain import OpenAI, SerpAPIWrapper\n",
|
|
"from langchain.agents import initialize_agent, Tool\n",
|
|
"\n",
|
|
"llm = OpenAI(temperature=0)\n",
|
|
"search = SerpAPIWrapper()\n",
|
|
"tools = [\n",
|
|
" Tool(\n",
|
|
" name=\"Intermediate Answer\",\n",
|
|
" func=search.run,\n",
|
|
" description=\"useful for when you need to ask with search\"\n",
|
|
" )\n",
|
|
"]\n",
|
|
"\n",
|
|
"self_ask_with_search = initialize_agent(tools, llm, agent_path=\"lc://agents/self-ask-with-search/agent.json\", verbose=True)\n",
|
|
"self_ask_with_search.run(\"What is the hometown of the reigning men's U.S. Open champion?\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "3aede965",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Pinning Dependencies\n",
|
|
"\n",
|
|
"Specific versions of LangChainHub agents can be pinned with the `lc@<ref>://` syntax."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "e679f7b6",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"No `_type` key found, defaulting to `prompt`.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"self_ask_with_search = initialize_agent(tools, llm, agent_path=\"lc@2826ef9e8acdf88465e1e5fc8a7bf59e0f9d0a85://agents/self-ask-with-search/agent.json\", verbose=True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "9d3d6697",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.1"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|