forked from Archives/langchain
2eeaccf01c
Co-authored-by: Jiří Moravčík <jiri.moravcik@gmail.com>
165 lines
4.9 KiB
Plaintext
165 lines
4.9 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Apify\n",
|
|
"\n",
|
|
"This notebook shows how to use the [Apify integration](../../../../ecosystem/apify.md) for LangChain.\n",
|
|
"\n",
|
|
"[Apify](https://apify.com) is a cloud platform for web scraping and data extraction,\n",
|
|
"which provides an [ecosystem](https://apify.com/store) of more than a thousand\n",
|
|
"ready-made apps called *Actors* for various web scraping, crawling, and data extraction use cases.\n",
|
|
"For example, you can use it to extract Google Search results, Instagram and Facebook profiles, products from Amazon or Shopify, Google Maps reviews, etc. etc.\n",
|
|
"\n",
|
|
"In this example, we'll use the [Website Content Crawler](https://apify.com/apify/website-content-crawler) Actor,\n",
|
|
"which can deeply crawl websites such as documentation, knowledge bases, help centers, or blogs,\n",
|
|
"and extract text content from the web pages. Then we feed the documents into a vector index and answer questions from it.\n"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"First, import `ApifyWrapper` into your source code:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.document_loaders.base import Document\n",
|
|
"from langchain.indexes import VectorstoreIndexCreator\n",
|
|
"from langchain.utilities import ApifyWrapper"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Initialize it using your [Apify API token](https://console.apify.com/account/integrations) and for the purpose of this example, also with your OpenAI API key:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"os.environ[\"OPENAI_API_KEY\"] = \"Your OpenAI API key\"\n",
|
|
"os.environ[\"APIFY_API_TOKEN\"] = \"Your Apify API token\"\n",
|
|
"\n",
|
|
"apify = ApifyWrapper()"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Then run the Actor, wait for it to finish, and fetch its results from the Apify dataset into a LangChain document loader.\n",
|
|
"\n",
|
|
"Note that if you already have some results in an Apify dataset, you can load them directly using `ApifyDatasetLoader`, as shown in [this notebook](../../../indexes/document_loaders/examples/apify_dataset.ipynb). In that notebook, you'll also find the explanation of the `dataset_mapping_function`, which is used to map fields from the Apify dataset records to LangChain `Document` fields."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"loader = apify.call_actor(\n",
|
|
" actor_id=\"apify/website-content-crawler\",\n",
|
|
" run_input={\"startUrls\": [{\"url\": \"https://python.langchain.com/en/latest/\"}]},\n",
|
|
" dataset_mapping_function=lambda item: Document(\n",
|
|
" page_content=item[\"text\"] or \"\", metadata={\"source\": item[\"url\"]}\n",
|
|
" ),\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Initialize the vector index from the crawled documents:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"index = VectorstoreIndexCreator().from_loaders([loader])"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"And finally, query the vector index:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"query = \"What is LangChain?\"\n",
|
|
"result = index.query_with_sources(query)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" LangChain is a standard interface through which you can interact with a variety of large language models (LLMs). It provides modules that can be used to build language model applications, and it also provides chains and agents with memory capabilities.\n",
|
|
"\n",
|
|
"https://python.langchain.com/en/latest/modules/models/llms.html, https://python.langchain.com/en/latest/getting_started/getting_started.html\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(result[\"answer\"])\n",
|
|
"print(result[\"sources\"])"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.16"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|