forked from Archives/langchain
b21d7c138c
Rebased Mahmedk's PR with the callback refactor and added the example requested by hwchase plus a couple minor fixes --------- Co-authored-by: Ahmed K <77802633+mahmedk@users.noreply.github.com> Co-authored-by: Ahmed K <mda3k27@gmail.com> Co-authored-by: Davis Chase <130488702+dev2049@users.noreply.github.com> Co-authored-by: Corey Zumar <39497902+dbczumar@users.noreply.github.com> Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
646 lines
23 KiB
Python
646 lines
23 KiB
Python
import random
|
|
import string
|
|
import tempfile
|
|
import traceback
|
|
from copy import deepcopy
|
|
from pathlib import Path
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
from langchain.callbacks.base import BaseCallbackHandler
|
|
from langchain.callbacks.utils import (
|
|
BaseMetadataCallbackHandler,
|
|
flatten_dict,
|
|
hash_string,
|
|
import_pandas,
|
|
import_spacy,
|
|
import_textstat,
|
|
)
|
|
from langchain.schema import AgentAction, AgentFinish, LLMResult
|
|
from langchain.utils import get_from_dict_or_env
|
|
|
|
|
|
def import_mlflow() -> Any:
|
|
try:
|
|
import mlflow
|
|
except ImportError:
|
|
raise ImportError(
|
|
"To use the mlflow callback manager you need to have the `mlflow` python "
|
|
"package installed. Please install it with `pip install mlflow>=2.3.0`"
|
|
)
|
|
return mlflow
|
|
|
|
|
|
def analyze_text(
|
|
text: str,
|
|
nlp: Any = None,
|
|
) -> dict:
|
|
"""Analyze text using textstat and spacy.
|
|
|
|
Parameters:
|
|
text (str): The text to analyze.
|
|
nlp (spacy.lang): The spacy language model to use for visualization.
|
|
|
|
Returns:
|
|
(dict): A dictionary containing the complexity metrics and visualization
|
|
files serialized to HTML string.
|
|
"""
|
|
resp: Dict[str, Any] = {}
|
|
textstat = import_textstat()
|
|
spacy = import_spacy()
|
|
text_complexity_metrics = {
|
|
"flesch_reading_ease": textstat.flesch_reading_ease(text),
|
|
"flesch_kincaid_grade": textstat.flesch_kincaid_grade(text),
|
|
"smog_index": textstat.smog_index(text),
|
|
"coleman_liau_index": textstat.coleman_liau_index(text),
|
|
"automated_readability_index": textstat.automated_readability_index(text),
|
|
"dale_chall_readability_score": textstat.dale_chall_readability_score(text),
|
|
"difficult_words": textstat.difficult_words(text),
|
|
"linsear_write_formula": textstat.linsear_write_formula(text),
|
|
"gunning_fog": textstat.gunning_fog(text),
|
|
# "text_standard": textstat.text_standard(text),
|
|
"fernandez_huerta": textstat.fernandez_huerta(text),
|
|
"szigriszt_pazos": textstat.szigriszt_pazos(text),
|
|
"gutierrez_polini": textstat.gutierrez_polini(text),
|
|
"crawford": textstat.crawford(text),
|
|
"gulpease_index": textstat.gulpease_index(text),
|
|
"osman": textstat.osman(text),
|
|
}
|
|
resp.update({"text_complexity_metrics": text_complexity_metrics})
|
|
resp.update(text_complexity_metrics)
|
|
|
|
if nlp is not None:
|
|
doc = nlp(text)
|
|
|
|
dep_out = spacy.displacy.render( # type: ignore
|
|
doc, style="dep", jupyter=False, page=True
|
|
)
|
|
|
|
ent_out = spacy.displacy.render( # type: ignore
|
|
doc, style="ent", jupyter=False, page=True
|
|
)
|
|
|
|
text_visualizations = {
|
|
"dependency_tree": dep_out,
|
|
"entities": ent_out,
|
|
}
|
|
|
|
resp.update(text_visualizations)
|
|
|
|
return resp
|
|
|
|
|
|
def construct_html_from_prompt_and_generation(prompt: str, generation: str) -> Any:
|
|
"""Construct an html element from a prompt and a generation.
|
|
|
|
Parameters:
|
|
prompt (str): The prompt.
|
|
generation (str): The generation.
|
|
|
|
Returns:
|
|
(str): The html string."""
|
|
formatted_prompt = prompt.replace("\n", "<br>")
|
|
formatted_generation = generation.replace("\n", "<br>")
|
|
|
|
return f"""
|
|
<p style="color:black;">{formatted_prompt}:</p>
|
|
<blockquote>
|
|
<p style="color:green;">
|
|
{formatted_generation}
|
|
</p>
|
|
</blockquote>
|
|
"""
|
|
|
|
|
|
class MlflowLogger:
|
|
"""Callback Handler that logs metrics and artifacts to mlflow server.
|
|
|
|
Parameters:
|
|
name (str): Name of the run.
|
|
experiment (str): Name of the experiment.
|
|
tags (str): Tags to be attached for the run.
|
|
tracking_uri (str): MLflow tracking server uri.
|
|
|
|
This handler implements the helper functions to initialize,
|
|
log metrics and artifacts to the mlflow server.
|
|
"""
|
|
|
|
def __init__(self, **kwargs: Any):
|
|
self.mlflow = import_mlflow()
|
|
tracking_uri = get_from_dict_or_env(
|
|
kwargs, "tracking_uri", "MLFLOW_TRACKING_URI", ""
|
|
)
|
|
self.mlflow.set_tracking_uri(tracking_uri)
|
|
|
|
# User can set other env variables described here
|
|
# > https://www.mlflow.org/docs/latest/tracking.html#logging-to-a-tracking-server
|
|
|
|
experiment_name = get_from_dict_or_env(
|
|
kwargs, "experiment_name", "MLFLOW_EXPERIMENT_NAME"
|
|
)
|
|
self.mlf_exp = self.mlflow.get_experiment_by_name(experiment_name)
|
|
if self.mlf_exp is not None:
|
|
self.mlf_expid = self.mlf_exp.experiment_id
|
|
else:
|
|
self.mlf_expid = self.mlflow.create_experiment(experiment_name)
|
|
|
|
self.start_run(kwargs["run_name"], kwargs["run_tags"])
|
|
|
|
def start_run(self, name: str, tags: Dict[str, str]) -> None:
|
|
"""To start a new run, auto generates the random suffix for name"""
|
|
if name.endswith("-%"):
|
|
rname = "".join(random.choices(string.ascii_uppercase + string.digits, k=7))
|
|
name = name.replace("%", rname)
|
|
self.run = self.mlflow.MlflowClient().create_run(
|
|
self.mlf_expid, run_name=name, tags=tags
|
|
)
|
|
|
|
def finish_run(self) -> None:
|
|
"""To finish the run."""
|
|
with self.mlflow.start_run(
|
|
run_id=self.run.info.run_id, experiment_id=self.mlf_expid
|
|
):
|
|
self.mlflow.end_run()
|
|
|
|
def metric(self, key: str, value: float) -> None:
|
|
"""To log metric to mlflow server."""
|
|
with self.mlflow.start_run(
|
|
run_id=self.run.info.run_id, experiment_id=self.mlf_expid
|
|
):
|
|
self.mlflow.log_metric(key, value)
|
|
|
|
def metrics(
|
|
self, data: Union[Dict[str, float], Dict[str, int]], step: Optional[int] = 0
|
|
) -> None:
|
|
"""To log all metrics in the input dict."""
|
|
with self.mlflow.start_run(
|
|
run_id=self.run.info.run_id, experiment_id=self.mlf_expid
|
|
):
|
|
self.mlflow.log_metrics(data)
|
|
|
|
def jsonf(self, data: Dict[str, Any], filename: str) -> None:
|
|
"""To log the input data as json file artifact."""
|
|
with self.mlflow.start_run(
|
|
run_id=self.run.info.run_id, experiment_id=self.mlf_expid
|
|
):
|
|
self.mlflow.log_dict(data, f"{filename}.json")
|
|
|
|
def table(self, name: str, dataframe) -> None: # type: ignore
|
|
"""To log the input pandas dataframe as a html table"""
|
|
self.html(dataframe.to_html(), f"table_{name}")
|
|
|
|
def html(self, html: str, filename: str) -> None:
|
|
"""To log the input html string as html file artifact."""
|
|
with self.mlflow.start_run(
|
|
run_id=self.run.info.run_id, experiment_id=self.mlf_expid
|
|
):
|
|
self.mlflow.log_text(html, f"{filename}.html")
|
|
|
|
def text(self, text: str, filename: str) -> None:
|
|
"""To log the input text as text file artifact."""
|
|
with self.mlflow.start_run(
|
|
run_id=self.run.info.run_id, experiment_id=self.mlf_expid
|
|
):
|
|
self.mlflow.log_text(text, f"{filename}.txt")
|
|
|
|
def artifact(self, path: str) -> None:
|
|
"""To upload the file from given path as artifact."""
|
|
with self.mlflow.start_run(
|
|
run_id=self.run.info.run_id, experiment_id=self.mlf_expid
|
|
):
|
|
self.mlflow.log_artifact(path)
|
|
|
|
def langchain_artifact(self, chain: Any) -> None:
|
|
with self.mlflow.start_run(
|
|
run_id=self.run.info.run_id, experiment_id=self.mlf_expid
|
|
):
|
|
self.mlflow.langchain.log_model(chain, "langchain-model")
|
|
|
|
|
|
class MlflowCallbackHandler(BaseMetadataCallbackHandler, BaseCallbackHandler):
|
|
"""Callback Handler that logs metrics and artifacts to mlflow server.
|
|
|
|
Parameters:
|
|
name (str): Name of the run.
|
|
experiment (str): Name of the experiment.
|
|
tags (str): Tags to be attached for the run.
|
|
tracking_uri (str): MLflow tracking server uri.
|
|
|
|
This handler will utilize the associated callback method called and formats
|
|
the input of each callback function with metadata regarding the state of LLM run,
|
|
and adds the response to the list of records for both the {method}_records and
|
|
action. It then logs the response to mlflow server.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
name: Optional[str] = "langchainrun-%",
|
|
experiment: Optional[str] = "langchain",
|
|
tags: Optional[Dict] = {},
|
|
tracking_uri: Optional[str] = None,
|
|
) -> None:
|
|
"""Initialize callback handler."""
|
|
import_pandas()
|
|
import_textstat()
|
|
import_mlflow()
|
|
spacy = import_spacy()
|
|
super().__init__()
|
|
|
|
self.name = name
|
|
self.experiment = experiment
|
|
self.tags = tags
|
|
self.tracking_uri = tracking_uri
|
|
|
|
self.temp_dir = tempfile.TemporaryDirectory()
|
|
|
|
self.mlflg = MlflowLogger(
|
|
tracking_uri=self.tracking_uri,
|
|
experiment_name=self.experiment,
|
|
run_name=self.name,
|
|
run_tags=self.tags,
|
|
)
|
|
|
|
self.action_records: list = []
|
|
self.nlp = spacy.load("en_core_web_sm")
|
|
|
|
self.metrics = {
|
|
"step": 0,
|
|
"starts": 0,
|
|
"ends": 0,
|
|
"errors": 0,
|
|
"text_ctr": 0,
|
|
"chain_starts": 0,
|
|
"chain_ends": 0,
|
|
"llm_starts": 0,
|
|
"llm_ends": 0,
|
|
"llm_streams": 0,
|
|
"tool_starts": 0,
|
|
"tool_ends": 0,
|
|
"agent_ends": 0,
|
|
}
|
|
|
|
self.records: Dict[str, Any] = {
|
|
"on_llm_start_records": [],
|
|
"on_llm_token_records": [],
|
|
"on_llm_end_records": [],
|
|
"on_chain_start_records": [],
|
|
"on_chain_end_records": [],
|
|
"on_tool_start_records": [],
|
|
"on_tool_end_records": [],
|
|
"on_text_records": [],
|
|
"on_agent_finish_records": [],
|
|
"on_agent_action_records": [],
|
|
"action_records": [],
|
|
}
|
|
|
|
def _reset(self) -> None:
|
|
for k, v in self.metrics.items():
|
|
self.metrics[k] = 0
|
|
for k, v in self.records.items():
|
|
self.records[k] = []
|
|
|
|
def on_llm_start(
|
|
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
|
|
) -> None:
|
|
"""Run when LLM starts."""
|
|
self.metrics["step"] += 1
|
|
self.metrics["llm_starts"] += 1
|
|
self.metrics["starts"] += 1
|
|
|
|
llm_starts = self.metrics["llm_starts"]
|
|
|
|
resp: Dict[str, Any] = {}
|
|
resp.update({"action": "on_llm_start"})
|
|
resp.update(flatten_dict(serialized))
|
|
resp.update(self.metrics)
|
|
|
|
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
|
|
|
|
for idx, prompt in enumerate(prompts):
|
|
prompt_resp = deepcopy(resp)
|
|
prompt_resp["prompt"] = prompt
|
|
self.records["on_llm_start_records"].append(prompt_resp)
|
|
self.records["action_records"].append(prompt_resp)
|
|
self.mlflg.jsonf(prompt_resp, f"llm_start_{llm_starts}_prompt_{idx}")
|
|
|
|
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
|
|
"""Run when LLM generates a new token."""
|
|
self.metrics["step"] += 1
|
|
self.metrics["llm_streams"] += 1
|
|
|
|
llm_streams = self.metrics["llm_streams"]
|
|
|
|
resp: Dict[str, Any] = {}
|
|
resp.update({"action": "on_llm_new_token", "token": token})
|
|
resp.update(self.metrics)
|
|
|
|
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
|
|
|
|
self.records["on_llm_token_records"].append(resp)
|
|
self.records["action_records"].append(resp)
|
|
self.mlflg.jsonf(resp, f"llm_new_tokens_{llm_streams}")
|
|
|
|
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
|
|
"""Run when LLM ends running."""
|
|
self.metrics["step"] += 1
|
|
self.metrics["llm_ends"] += 1
|
|
self.metrics["ends"] += 1
|
|
|
|
llm_ends = self.metrics["llm_ends"]
|
|
|
|
resp: Dict[str, Any] = {}
|
|
resp.update({"action": "on_llm_end"})
|
|
resp.update(flatten_dict(response.llm_output or {}))
|
|
resp.update(self.metrics)
|
|
|
|
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
|
|
|
|
for generations in response.generations:
|
|
for idx, generation in enumerate(generations):
|
|
generation_resp = deepcopy(resp)
|
|
generation_resp.update(flatten_dict(generation.dict()))
|
|
generation_resp.update(
|
|
analyze_text(
|
|
generation.text,
|
|
nlp=self.nlp,
|
|
)
|
|
)
|
|
complexity_metrics: Dict[str, float] = generation_resp.pop("text_complexity_metrics") # type: ignore # noqa: E501
|
|
self.mlflg.metrics(
|
|
complexity_metrics,
|
|
step=self.metrics["step"],
|
|
)
|
|
self.records["on_llm_end_records"].append(generation_resp)
|
|
self.records["action_records"].append(generation_resp)
|
|
self.mlflg.jsonf(resp, f"llm_end_{llm_ends}_generation_{idx}")
|
|
dependency_tree = generation_resp["dependency_tree"]
|
|
entities = generation_resp["entities"]
|
|
self.mlflg.html(dependency_tree, "dep-" + hash_string(generation.text))
|
|
self.mlflg.html(entities, "ent-" + hash_string(generation.text))
|
|
|
|
def on_llm_error(
|
|
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
|
) -> None:
|
|
"""Run when LLM errors."""
|
|
self.metrics["step"] += 1
|
|
self.metrics["errors"] += 1
|
|
|
|
def on_chain_start(
|
|
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
|
|
) -> None:
|
|
"""Run when chain starts running."""
|
|
self.metrics["step"] += 1
|
|
self.metrics["chain_starts"] += 1
|
|
self.metrics["starts"] += 1
|
|
|
|
chain_starts = self.metrics["chain_starts"]
|
|
|
|
resp: Dict[str, Any] = {}
|
|
resp.update({"action": "on_chain_start"})
|
|
resp.update(flatten_dict(serialized))
|
|
resp.update(self.metrics)
|
|
|
|
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
|
|
|
|
chain_input = ",".join([f"{k}={v}" for k, v in inputs.items()])
|
|
input_resp = deepcopy(resp)
|
|
input_resp["inputs"] = chain_input
|
|
self.records["on_chain_start_records"].append(input_resp)
|
|
self.records["action_records"].append(input_resp)
|
|
self.mlflg.jsonf(input_resp, f"chain_start_{chain_starts}")
|
|
|
|
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
|
|
"""Run when chain ends running."""
|
|
self.metrics["step"] += 1
|
|
self.metrics["chain_ends"] += 1
|
|
self.metrics["ends"] += 1
|
|
|
|
chain_ends = self.metrics["chain_ends"]
|
|
|
|
resp: Dict[str, Any] = {}
|
|
chain_output = ",".join([f"{k}={v}" for k, v in outputs.items()])
|
|
resp.update({"action": "on_chain_end", "outputs": chain_output})
|
|
resp.update(self.metrics)
|
|
|
|
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
|
|
|
|
self.records["on_chain_end_records"].append(resp)
|
|
self.records["action_records"].append(resp)
|
|
self.mlflg.jsonf(resp, f"chain_end_{chain_ends}")
|
|
|
|
def on_chain_error(
|
|
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
|
) -> None:
|
|
"""Run when chain errors."""
|
|
self.metrics["step"] += 1
|
|
self.metrics["errors"] += 1
|
|
|
|
def on_tool_start(
|
|
self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
|
|
) -> None:
|
|
"""Run when tool starts running."""
|
|
self.metrics["step"] += 1
|
|
self.metrics["tool_starts"] += 1
|
|
self.metrics["starts"] += 1
|
|
|
|
tool_starts = self.metrics["tool_starts"]
|
|
|
|
resp: Dict[str, Any] = {}
|
|
resp.update({"action": "on_tool_start", "input_str": input_str})
|
|
resp.update(flatten_dict(serialized))
|
|
resp.update(self.metrics)
|
|
|
|
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
|
|
|
|
self.records["on_tool_start_records"].append(resp)
|
|
self.records["action_records"].append(resp)
|
|
self.mlflg.jsonf(resp, f"tool_start_{tool_starts}")
|
|
|
|
def on_tool_end(self, output: str, **kwargs: Any) -> None:
|
|
"""Run when tool ends running."""
|
|
self.metrics["step"] += 1
|
|
self.metrics["tool_ends"] += 1
|
|
self.metrics["ends"] += 1
|
|
|
|
tool_ends = self.metrics["tool_ends"]
|
|
|
|
resp: Dict[str, Any] = {}
|
|
resp.update({"action": "on_tool_end", "output": output})
|
|
resp.update(self.metrics)
|
|
|
|
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
|
|
|
|
self.records["on_tool_end_records"].append(resp)
|
|
self.records["action_records"].append(resp)
|
|
self.mlflg.jsonf(resp, f"tool_end_{tool_ends}")
|
|
|
|
def on_tool_error(
|
|
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
|
) -> None:
|
|
"""Run when tool errors."""
|
|
self.metrics["step"] += 1
|
|
self.metrics["errors"] += 1
|
|
|
|
def on_text(self, text: str, **kwargs: Any) -> None:
|
|
"""
|
|
Run when agent is ending.
|
|
"""
|
|
self.metrics["step"] += 1
|
|
self.metrics["text_ctr"] += 1
|
|
|
|
text_ctr = self.metrics["text_ctr"]
|
|
|
|
resp: Dict[str, Any] = {}
|
|
resp.update({"action": "on_text", "text": text})
|
|
resp.update(self.metrics)
|
|
|
|
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
|
|
|
|
self.records["on_text_records"].append(resp)
|
|
self.records["action_records"].append(resp)
|
|
self.mlflg.jsonf(resp, f"on_text_{text_ctr}")
|
|
|
|
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
|
|
"""Run when agent ends running."""
|
|
self.metrics["step"] += 1
|
|
self.metrics["agent_ends"] += 1
|
|
self.metrics["ends"] += 1
|
|
|
|
agent_ends = self.metrics["agent_ends"]
|
|
resp: Dict[str, Any] = {}
|
|
resp.update(
|
|
{
|
|
"action": "on_agent_finish",
|
|
"output": finish.return_values["output"],
|
|
"log": finish.log,
|
|
}
|
|
)
|
|
resp.update(self.metrics)
|
|
|
|
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
|
|
|
|
self.records["on_agent_finish_records"].append(resp)
|
|
self.records["action_records"].append(resp)
|
|
self.mlflg.jsonf(resp, f"agent_finish_{agent_ends}")
|
|
|
|
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
|
|
"""Run on agent action."""
|
|
self.metrics["step"] += 1
|
|
self.metrics["tool_starts"] += 1
|
|
self.metrics["starts"] += 1
|
|
|
|
tool_starts = self.metrics["tool_starts"]
|
|
resp: Dict[str, Any] = {}
|
|
resp.update(
|
|
{
|
|
"action": "on_agent_action",
|
|
"tool": action.tool,
|
|
"tool_input": action.tool_input,
|
|
"log": action.log,
|
|
}
|
|
)
|
|
resp.update(self.metrics)
|
|
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
|
|
self.records["on_agent_action_records"].append(resp)
|
|
self.records["action_records"].append(resp)
|
|
self.mlflg.jsonf(resp, f"agent_action_{tool_starts}")
|
|
|
|
def _create_session_analysis_df(self) -> Any:
|
|
"""Create a dataframe with all the information from the session."""
|
|
pd = import_pandas()
|
|
on_llm_start_records_df = pd.DataFrame(self.records["on_llm_start_records"])
|
|
on_llm_end_records_df = pd.DataFrame(self.records["on_llm_end_records"])
|
|
|
|
llm_input_prompts_df = (
|
|
on_llm_start_records_df[["step", "prompt", "name"]]
|
|
.dropna(axis=1)
|
|
.rename({"step": "prompt_step"}, axis=1)
|
|
)
|
|
complexity_metrics_columns = []
|
|
visualizations_columns = []
|
|
|
|
complexity_metrics_columns = [
|
|
"flesch_reading_ease",
|
|
"flesch_kincaid_grade",
|
|
"smog_index",
|
|
"coleman_liau_index",
|
|
"automated_readability_index",
|
|
"dale_chall_readability_score",
|
|
"difficult_words",
|
|
"linsear_write_formula",
|
|
"gunning_fog",
|
|
# "text_standard",
|
|
"fernandez_huerta",
|
|
"szigriszt_pazos",
|
|
"gutierrez_polini",
|
|
"crawford",
|
|
"gulpease_index",
|
|
"osman",
|
|
]
|
|
|
|
visualizations_columns = ["dependency_tree", "entities"]
|
|
|
|
llm_outputs_df = (
|
|
on_llm_end_records_df[
|
|
[
|
|
"step",
|
|
"text",
|
|
"token_usage_total_tokens",
|
|
"token_usage_prompt_tokens",
|
|
"token_usage_completion_tokens",
|
|
]
|
|
+ complexity_metrics_columns
|
|
+ visualizations_columns
|
|
]
|
|
.dropna(axis=1)
|
|
.rename({"step": "output_step", "text": "output"}, axis=1)
|
|
)
|
|
session_analysis_df = pd.concat([llm_input_prompts_df, llm_outputs_df], axis=1)
|
|
session_analysis_df["chat_html"] = session_analysis_df[
|
|
["prompt", "output"]
|
|
].apply(
|
|
lambda row: construct_html_from_prompt_and_generation(
|
|
row["prompt"], row["output"]
|
|
),
|
|
axis=1,
|
|
)
|
|
return session_analysis_df
|
|
|
|
def flush_tracker(self, langchain_asset: Any = None, finish: bool = False) -> None:
|
|
pd = import_pandas()
|
|
self.mlflg.table("action_records", pd.DataFrame(self.records["action_records"]))
|
|
session_analysis_df = self._create_session_analysis_df()
|
|
chat_html = session_analysis_df.pop("chat_html")
|
|
chat_html = chat_html.replace("\n", "", regex=True)
|
|
self.mlflg.table("session_analysis", pd.DataFrame(session_analysis_df))
|
|
self.mlflg.html("".join(chat_html.tolist()), "chat_html")
|
|
|
|
if langchain_asset:
|
|
# To avoid circular import error
|
|
# mlflow only supports LLMChain asset
|
|
if "langchain.chains.llm.LLMChain" in str(type(langchain_asset)):
|
|
self.mlflg.langchain_artifact(langchain_asset)
|
|
else:
|
|
langchain_asset_path = str(Path(self.temp_dir.name, "model.json"))
|
|
try:
|
|
langchain_asset.save(langchain_asset_path)
|
|
self.mlflg.artifact(langchain_asset_path)
|
|
except ValueError:
|
|
try:
|
|
langchain_asset.save_agent(langchain_asset_path)
|
|
self.mlflg.artifact(langchain_asset_path)
|
|
except AttributeError:
|
|
print("Could not save model.")
|
|
traceback.print_exc()
|
|
pass
|
|
except NotImplementedError:
|
|
print("Could not save model.")
|
|
traceback.print_exc()
|
|
pass
|
|
except NotImplementedError:
|
|
print("Could not save model.")
|
|
traceback.print_exc()
|
|
pass
|
|
if finish:
|
|
self.mlflg.finish_run()
|
|
self._reset()
|