langchain/langchain/callbacks/mlflow_callback.py
Akshaya Annavajhala b21d7c138c
Callback Handler for MLflow (#4150)
Rebased Mahmedk's PR with the callback refactor and added the example
requested by hwchase plus a couple minor fixes

---------

Co-authored-by: Ahmed K <77802633+mahmedk@users.noreply.github.com>
Co-authored-by: Ahmed K <mda3k27@gmail.com>
Co-authored-by: Davis Chase <130488702+dev2049@users.noreply.github.com>
Co-authored-by: Corey Zumar <39497902+dbczumar@users.noreply.github.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
2023-05-11 01:10:40 -07:00

646 lines
23 KiB
Python

import random
import string
import tempfile
import traceback
from copy import deepcopy
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
from langchain.callbacks.base import BaseCallbackHandler
from langchain.callbacks.utils import (
BaseMetadataCallbackHandler,
flatten_dict,
hash_string,
import_pandas,
import_spacy,
import_textstat,
)
from langchain.schema import AgentAction, AgentFinish, LLMResult
from langchain.utils import get_from_dict_or_env
def import_mlflow() -> Any:
try:
import mlflow
except ImportError:
raise ImportError(
"To use the mlflow callback manager you need to have the `mlflow` python "
"package installed. Please install it with `pip install mlflow>=2.3.0`"
)
return mlflow
def analyze_text(
text: str,
nlp: Any = None,
) -> dict:
"""Analyze text using textstat and spacy.
Parameters:
text (str): The text to analyze.
nlp (spacy.lang): The spacy language model to use for visualization.
Returns:
(dict): A dictionary containing the complexity metrics and visualization
files serialized to HTML string.
"""
resp: Dict[str, Any] = {}
textstat = import_textstat()
spacy = import_spacy()
text_complexity_metrics = {
"flesch_reading_ease": textstat.flesch_reading_ease(text),
"flesch_kincaid_grade": textstat.flesch_kincaid_grade(text),
"smog_index": textstat.smog_index(text),
"coleman_liau_index": textstat.coleman_liau_index(text),
"automated_readability_index": textstat.automated_readability_index(text),
"dale_chall_readability_score": textstat.dale_chall_readability_score(text),
"difficult_words": textstat.difficult_words(text),
"linsear_write_formula": textstat.linsear_write_formula(text),
"gunning_fog": textstat.gunning_fog(text),
# "text_standard": textstat.text_standard(text),
"fernandez_huerta": textstat.fernandez_huerta(text),
"szigriszt_pazos": textstat.szigriszt_pazos(text),
"gutierrez_polini": textstat.gutierrez_polini(text),
"crawford": textstat.crawford(text),
"gulpease_index": textstat.gulpease_index(text),
"osman": textstat.osman(text),
}
resp.update({"text_complexity_metrics": text_complexity_metrics})
resp.update(text_complexity_metrics)
if nlp is not None:
doc = nlp(text)
dep_out = spacy.displacy.render( # type: ignore
doc, style="dep", jupyter=False, page=True
)
ent_out = spacy.displacy.render( # type: ignore
doc, style="ent", jupyter=False, page=True
)
text_visualizations = {
"dependency_tree": dep_out,
"entities": ent_out,
}
resp.update(text_visualizations)
return resp
def construct_html_from_prompt_and_generation(prompt: str, generation: str) -> Any:
"""Construct an html element from a prompt and a generation.
Parameters:
prompt (str): The prompt.
generation (str): The generation.
Returns:
(str): The html string."""
formatted_prompt = prompt.replace("\n", "<br>")
formatted_generation = generation.replace("\n", "<br>")
return f"""
<p style="color:black;">{formatted_prompt}:</p>
<blockquote>
<p style="color:green;">
{formatted_generation}
</p>
</blockquote>
"""
class MlflowLogger:
"""Callback Handler that logs metrics and artifacts to mlflow server.
Parameters:
name (str): Name of the run.
experiment (str): Name of the experiment.
tags (str): Tags to be attached for the run.
tracking_uri (str): MLflow tracking server uri.
This handler implements the helper functions to initialize,
log metrics and artifacts to the mlflow server.
"""
def __init__(self, **kwargs: Any):
self.mlflow = import_mlflow()
tracking_uri = get_from_dict_or_env(
kwargs, "tracking_uri", "MLFLOW_TRACKING_URI", ""
)
self.mlflow.set_tracking_uri(tracking_uri)
# User can set other env variables described here
# > https://www.mlflow.org/docs/latest/tracking.html#logging-to-a-tracking-server
experiment_name = get_from_dict_or_env(
kwargs, "experiment_name", "MLFLOW_EXPERIMENT_NAME"
)
self.mlf_exp = self.mlflow.get_experiment_by_name(experiment_name)
if self.mlf_exp is not None:
self.mlf_expid = self.mlf_exp.experiment_id
else:
self.mlf_expid = self.mlflow.create_experiment(experiment_name)
self.start_run(kwargs["run_name"], kwargs["run_tags"])
def start_run(self, name: str, tags: Dict[str, str]) -> None:
"""To start a new run, auto generates the random suffix for name"""
if name.endswith("-%"):
rname = "".join(random.choices(string.ascii_uppercase + string.digits, k=7))
name = name.replace("%", rname)
self.run = self.mlflow.MlflowClient().create_run(
self.mlf_expid, run_name=name, tags=tags
)
def finish_run(self) -> None:
"""To finish the run."""
with self.mlflow.start_run(
run_id=self.run.info.run_id, experiment_id=self.mlf_expid
):
self.mlflow.end_run()
def metric(self, key: str, value: float) -> None:
"""To log metric to mlflow server."""
with self.mlflow.start_run(
run_id=self.run.info.run_id, experiment_id=self.mlf_expid
):
self.mlflow.log_metric(key, value)
def metrics(
self, data: Union[Dict[str, float], Dict[str, int]], step: Optional[int] = 0
) -> None:
"""To log all metrics in the input dict."""
with self.mlflow.start_run(
run_id=self.run.info.run_id, experiment_id=self.mlf_expid
):
self.mlflow.log_metrics(data)
def jsonf(self, data: Dict[str, Any], filename: str) -> None:
"""To log the input data as json file artifact."""
with self.mlflow.start_run(
run_id=self.run.info.run_id, experiment_id=self.mlf_expid
):
self.mlflow.log_dict(data, f"{filename}.json")
def table(self, name: str, dataframe) -> None: # type: ignore
"""To log the input pandas dataframe as a html table"""
self.html(dataframe.to_html(), f"table_{name}")
def html(self, html: str, filename: str) -> None:
"""To log the input html string as html file artifact."""
with self.mlflow.start_run(
run_id=self.run.info.run_id, experiment_id=self.mlf_expid
):
self.mlflow.log_text(html, f"{filename}.html")
def text(self, text: str, filename: str) -> None:
"""To log the input text as text file artifact."""
with self.mlflow.start_run(
run_id=self.run.info.run_id, experiment_id=self.mlf_expid
):
self.mlflow.log_text(text, f"{filename}.txt")
def artifact(self, path: str) -> None:
"""To upload the file from given path as artifact."""
with self.mlflow.start_run(
run_id=self.run.info.run_id, experiment_id=self.mlf_expid
):
self.mlflow.log_artifact(path)
def langchain_artifact(self, chain: Any) -> None:
with self.mlflow.start_run(
run_id=self.run.info.run_id, experiment_id=self.mlf_expid
):
self.mlflow.langchain.log_model(chain, "langchain-model")
class MlflowCallbackHandler(BaseMetadataCallbackHandler, BaseCallbackHandler):
"""Callback Handler that logs metrics and artifacts to mlflow server.
Parameters:
name (str): Name of the run.
experiment (str): Name of the experiment.
tags (str): Tags to be attached for the run.
tracking_uri (str): MLflow tracking server uri.
This handler will utilize the associated callback method called and formats
the input of each callback function with metadata regarding the state of LLM run,
and adds the response to the list of records for both the {method}_records and
action. It then logs the response to mlflow server.
"""
def __init__(
self,
name: Optional[str] = "langchainrun-%",
experiment: Optional[str] = "langchain",
tags: Optional[Dict] = {},
tracking_uri: Optional[str] = None,
) -> None:
"""Initialize callback handler."""
import_pandas()
import_textstat()
import_mlflow()
spacy = import_spacy()
super().__init__()
self.name = name
self.experiment = experiment
self.tags = tags
self.tracking_uri = tracking_uri
self.temp_dir = tempfile.TemporaryDirectory()
self.mlflg = MlflowLogger(
tracking_uri=self.tracking_uri,
experiment_name=self.experiment,
run_name=self.name,
run_tags=self.tags,
)
self.action_records: list = []
self.nlp = spacy.load("en_core_web_sm")
self.metrics = {
"step": 0,
"starts": 0,
"ends": 0,
"errors": 0,
"text_ctr": 0,
"chain_starts": 0,
"chain_ends": 0,
"llm_starts": 0,
"llm_ends": 0,
"llm_streams": 0,
"tool_starts": 0,
"tool_ends": 0,
"agent_ends": 0,
}
self.records: Dict[str, Any] = {
"on_llm_start_records": [],
"on_llm_token_records": [],
"on_llm_end_records": [],
"on_chain_start_records": [],
"on_chain_end_records": [],
"on_tool_start_records": [],
"on_tool_end_records": [],
"on_text_records": [],
"on_agent_finish_records": [],
"on_agent_action_records": [],
"action_records": [],
}
def _reset(self) -> None:
for k, v in self.metrics.items():
self.metrics[k] = 0
for k, v in self.records.items():
self.records[k] = []
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
"""Run when LLM starts."""
self.metrics["step"] += 1
self.metrics["llm_starts"] += 1
self.metrics["starts"] += 1
llm_starts = self.metrics["llm_starts"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_llm_start"})
resp.update(flatten_dict(serialized))
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
for idx, prompt in enumerate(prompts):
prompt_resp = deepcopy(resp)
prompt_resp["prompt"] = prompt
self.records["on_llm_start_records"].append(prompt_resp)
self.records["action_records"].append(prompt_resp)
self.mlflg.jsonf(prompt_resp, f"llm_start_{llm_starts}_prompt_{idx}")
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Run when LLM generates a new token."""
self.metrics["step"] += 1
self.metrics["llm_streams"] += 1
llm_streams = self.metrics["llm_streams"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_llm_new_token", "token": token})
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_llm_token_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"llm_new_tokens_{llm_streams}")
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
"""Run when LLM ends running."""
self.metrics["step"] += 1
self.metrics["llm_ends"] += 1
self.metrics["ends"] += 1
llm_ends = self.metrics["llm_ends"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_llm_end"})
resp.update(flatten_dict(response.llm_output or {}))
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
for generations in response.generations:
for idx, generation in enumerate(generations):
generation_resp = deepcopy(resp)
generation_resp.update(flatten_dict(generation.dict()))
generation_resp.update(
analyze_text(
generation.text,
nlp=self.nlp,
)
)
complexity_metrics: Dict[str, float] = generation_resp.pop("text_complexity_metrics") # type: ignore # noqa: E501
self.mlflg.metrics(
complexity_metrics,
step=self.metrics["step"],
)
self.records["on_llm_end_records"].append(generation_resp)
self.records["action_records"].append(generation_resp)
self.mlflg.jsonf(resp, f"llm_end_{llm_ends}_generation_{idx}")
dependency_tree = generation_resp["dependency_tree"]
entities = generation_resp["entities"]
self.mlflg.html(dependency_tree, "dep-" + hash_string(generation.text))
self.mlflg.html(entities, "ent-" + hash_string(generation.text))
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Run when LLM errors."""
self.metrics["step"] += 1
self.metrics["errors"] += 1
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
"""Run when chain starts running."""
self.metrics["step"] += 1
self.metrics["chain_starts"] += 1
self.metrics["starts"] += 1
chain_starts = self.metrics["chain_starts"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_chain_start"})
resp.update(flatten_dict(serialized))
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
chain_input = ",".join([f"{k}={v}" for k, v in inputs.items()])
input_resp = deepcopy(resp)
input_resp["inputs"] = chain_input
self.records["on_chain_start_records"].append(input_resp)
self.records["action_records"].append(input_resp)
self.mlflg.jsonf(input_resp, f"chain_start_{chain_starts}")
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
"""Run when chain ends running."""
self.metrics["step"] += 1
self.metrics["chain_ends"] += 1
self.metrics["ends"] += 1
chain_ends = self.metrics["chain_ends"]
resp: Dict[str, Any] = {}
chain_output = ",".join([f"{k}={v}" for k, v in outputs.items()])
resp.update({"action": "on_chain_end", "outputs": chain_output})
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_chain_end_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"chain_end_{chain_ends}")
def on_chain_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Run when chain errors."""
self.metrics["step"] += 1
self.metrics["errors"] += 1
def on_tool_start(
self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
) -> None:
"""Run when tool starts running."""
self.metrics["step"] += 1
self.metrics["tool_starts"] += 1
self.metrics["starts"] += 1
tool_starts = self.metrics["tool_starts"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_tool_start", "input_str": input_str})
resp.update(flatten_dict(serialized))
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_tool_start_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"tool_start_{tool_starts}")
def on_tool_end(self, output: str, **kwargs: Any) -> None:
"""Run when tool ends running."""
self.metrics["step"] += 1
self.metrics["tool_ends"] += 1
self.metrics["ends"] += 1
tool_ends = self.metrics["tool_ends"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_tool_end", "output": output})
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_tool_end_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"tool_end_{tool_ends}")
def on_tool_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Run when tool errors."""
self.metrics["step"] += 1
self.metrics["errors"] += 1
def on_text(self, text: str, **kwargs: Any) -> None:
"""
Run when agent is ending.
"""
self.metrics["step"] += 1
self.metrics["text_ctr"] += 1
text_ctr = self.metrics["text_ctr"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_text", "text": text})
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_text_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"on_text_{text_ctr}")
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
"""Run when agent ends running."""
self.metrics["step"] += 1
self.metrics["agent_ends"] += 1
self.metrics["ends"] += 1
agent_ends = self.metrics["agent_ends"]
resp: Dict[str, Any] = {}
resp.update(
{
"action": "on_agent_finish",
"output": finish.return_values["output"],
"log": finish.log,
}
)
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_agent_finish_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"agent_finish_{agent_ends}")
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
"""Run on agent action."""
self.metrics["step"] += 1
self.metrics["tool_starts"] += 1
self.metrics["starts"] += 1
tool_starts = self.metrics["tool_starts"]
resp: Dict[str, Any] = {}
resp.update(
{
"action": "on_agent_action",
"tool": action.tool,
"tool_input": action.tool_input,
"log": action.log,
}
)
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_agent_action_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"agent_action_{tool_starts}")
def _create_session_analysis_df(self) -> Any:
"""Create a dataframe with all the information from the session."""
pd = import_pandas()
on_llm_start_records_df = pd.DataFrame(self.records["on_llm_start_records"])
on_llm_end_records_df = pd.DataFrame(self.records["on_llm_end_records"])
llm_input_prompts_df = (
on_llm_start_records_df[["step", "prompt", "name"]]
.dropna(axis=1)
.rename({"step": "prompt_step"}, axis=1)
)
complexity_metrics_columns = []
visualizations_columns = []
complexity_metrics_columns = [
"flesch_reading_ease",
"flesch_kincaid_grade",
"smog_index",
"coleman_liau_index",
"automated_readability_index",
"dale_chall_readability_score",
"difficult_words",
"linsear_write_formula",
"gunning_fog",
# "text_standard",
"fernandez_huerta",
"szigriszt_pazos",
"gutierrez_polini",
"crawford",
"gulpease_index",
"osman",
]
visualizations_columns = ["dependency_tree", "entities"]
llm_outputs_df = (
on_llm_end_records_df[
[
"step",
"text",
"token_usage_total_tokens",
"token_usage_prompt_tokens",
"token_usage_completion_tokens",
]
+ complexity_metrics_columns
+ visualizations_columns
]
.dropna(axis=1)
.rename({"step": "output_step", "text": "output"}, axis=1)
)
session_analysis_df = pd.concat([llm_input_prompts_df, llm_outputs_df], axis=1)
session_analysis_df["chat_html"] = session_analysis_df[
["prompt", "output"]
].apply(
lambda row: construct_html_from_prompt_and_generation(
row["prompt"], row["output"]
),
axis=1,
)
return session_analysis_df
def flush_tracker(self, langchain_asset: Any = None, finish: bool = False) -> None:
pd = import_pandas()
self.mlflg.table("action_records", pd.DataFrame(self.records["action_records"]))
session_analysis_df = self._create_session_analysis_df()
chat_html = session_analysis_df.pop("chat_html")
chat_html = chat_html.replace("\n", "", regex=True)
self.mlflg.table("session_analysis", pd.DataFrame(session_analysis_df))
self.mlflg.html("".join(chat_html.tolist()), "chat_html")
if langchain_asset:
# To avoid circular import error
# mlflow only supports LLMChain asset
if "langchain.chains.llm.LLMChain" in str(type(langchain_asset)):
self.mlflg.langchain_artifact(langchain_asset)
else:
langchain_asset_path = str(Path(self.temp_dir.name, "model.json"))
try:
langchain_asset.save(langchain_asset_path)
self.mlflg.artifact(langchain_asset_path)
except ValueError:
try:
langchain_asset.save_agent(langchain_asset_path)
self.mlflg.artifact(langchain_asset_path)
except AttributeError:
print("Could not save model.")
traceback.print_exc()
pass
except NotImplementedError:
print("Could not save model.")
traceback.print_exc()
pass
except NotImplementedError:
print("Could not save model.")
traceback.print_exc()
pass
if finish:
self.mlflg.finish_run()
self._reset()