forked from Archives/langchain
76aff023d7
also adds embeddings and an in memory docstore
48 lines
1.5 KiB
Python
48 lines
1.5 KiB
Python
"""Test FAISS functionality."""
|
|
from typing import List
|
|
|
|
import pytest
|
|
|
|
from langchain.docstore.document import Document
|
|
from langchain.docstore.in_memory import InMemoryDocstore
|
|
from langchain.embeddings.base import Embeddings
|
|
from langchain.faiss import FAISS
|
|
|
|
|
|
class FakeEmbeddings(Embeddings):
|
|
"""Fake embeddings functionality for testing."""
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Return simple embeddings."""
|
|
return [[i] * 10 for i in range(len(texts))]
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Return simple embeddings."""
|
|
return [0] * 10
|
|
|
|
|
|
def test_faiss() -> None:
|
|
"""Test end to end construction and search."""
|
|
texts = ["foo", "bar", "baz"]
|
|
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
|
|
expected_docstore = InMemoryDocstore(
|
|
{
|
|
"0": Document(page_content="foo"),
|
|
"1": Document(page_content="bar"),
|
|
"2": Document(page_content="baz"),
|
|
}
|
|
)
|
|
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
|
|
output = docsearch.similarity_search("foo", k=1)
|
|
assert output == [Document(page_content="foo")]
|
|
|
|
|
|
def test_faiss_search_not_found() -> None:
|
|
"""Test what happens when document is not found."""
|
|
texts = ["foo", "bar", "baz"]
|
|
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
|
|
# Get rid of the docstore to purposefully induce errors.
|
|
docsearch.docstore = InMemoryDocstore({})
|
|
with pytest.raises(ValueError):
|
|
docsearch.similarity_search("foo")
|