forked from Archives/langchain
93d53e417a
Fix typo in docs
320 lines
10 KiB
Plaintext
320 lines
10 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "20deed05",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Unstructured File Loader\n",
|
|
"This notebook covers how to use Unstructured to load files of many types. Unstructured currently supports loading of text files, powerpoints, html, pdfs, images, and more."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "2886982e",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# # Install package\n",
|
|
"!pip install \"unstructured[local-inference]\"\n",
|
|
"!pip install \"detectron2@git+https://github.com/facebookresearch/detectron2.git@v0.6#egg=detectron2\"\n",
|
|
"!pip install layoutparser[layoutmodels,tesseract]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "54d62efd",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# # Install other dependencies\n",
|
|
"# # https://github.com/Unstructured-IO/unstructured/blob/main/docs/source/installing.rst\n",
|
|
"# !brew install libmagic\n",
|
|
"# !brew install poppler\n",
|
|
"# !brew install tesseract\n",
|
|
"# # If parsing xml / html documents:\n",
|
|
"# !brew install libxml2\n",
|
|
"# !brew install libxslt"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "af6a64f5",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# import nltk\n",
|
|
"# nltk.download('punkt')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "79d3e549",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.document_loaders import UnstructuredFileLoader"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "2593d1dc",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"loader = UnstructuredFileLoader(\"./example_data/state_of_the_union.txt\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "fe34e941",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"docs = loader.load()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "ee449788",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans.\\n\\nLast year COVID-19 kept us apart. This year we are finally together again.\\n\\nTonight, we meet as Democrats Republicans and Independents. But most importantly as Americans.\\n\\nWith a duty to one another to the American people to the Constit'"
|
|
]
|
|
},
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"docs[0].page_content[:400]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "7874d01d",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Retain Elements\n",
|
|
"\n",
|
|
"Under the hood, Unstructured creates different \"elements\" for different chunks of text. By default we combine those together, but you can easily keep that separation by specifying `mode=\"elements\"`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"id": "ff5b616d",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"loader = UnstructuredFileLoader(\"./example_data/state_of_the_union.txt\", mode=\"elements\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"id": "feca3b6c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"docs = loader.load()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"id": "fec5bbac",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[Document(page_content='Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans.', lookup_str='', metadata={'source': '../../state_of_the_union.txt'}, lookup_index=0),\n",
|
|
" Document(page_content='Last year COVID-19 kept us apart. This year we are finally together again.', lookup_str='', metadata={'source': '../../state_of_the_union.txt'}, lookup_index=0),\n",
|
|
" Document(page_content='Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans.', lookup_str='', metadata={'source': '../../state_of_the_union.txt'}, lookup_index=0),\n",
|
|
" Document(page_content='With a duty to one another to the American people to the Constitution.', lookup_str='', metadata={'source': '../../state_of_the_union.txt'}, lookup_index=0),\n",
|
|
" Document(page_content='And with an unwavering resolve that freedom will always triumph over tyranny.', lookup_str='', metadata={'source': '../../state_of_the_union.txt'}, lookup_index=0)]"
|
|
]
|
|
},
|
|
"execution_count": 12,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"docs[:5]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "672733fd",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Define a Partitioning Strategy\n",
|
|
"\n",
|
|
"Unstructured document loader allow users to pass in a `strategy` parameter that lets `unstructured` know how to partition the document. Currently supported strategies are `\"hi_res\"` (the default) and `\"fast\"`. Hi res partitioning strategies are more accurate, but take longer to process. Fast strategies partition the document more quickly, but trade-off accuracy. Not all document types have separate hi res and fast partitioning strategies. For those document types, the `strategy` kwarg is ignored. In some cases, the high res strategy will fallback to fast if there is a dependency missing (i.e. a model for document partitioning). You can see how to apply a strategy to an `UnstructuredFileLoader` below."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "767238a4",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.document_loaders import UnstructuredFileLoader"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "9518b425",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"loader = UnstructuredFileLoader(\"layout-parser-paper-fast.pdf\", strategy=\"fast\", mode=\"elements\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "645f29e9",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"docs = loader.load()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "60685353",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[Document(page_content='1', lookup_str='', metadata={'source': 'layout-parser-paper-fast.pdf', 'filename': 'layout-parser-paper-fast.pdf', 'page_number': 1, 'category': 'UncategorizedText'}, lookup_index=0),\n",
|
|
" Document(page_content='2', lookup_str='', metadata={'source': 'layout-parser-paper-fast.pdf', 'filename': 'layout-parser-paper-fast.pdf', 'page_number': 1, 'category': 'UncategorizedText'}, lookup_index=0),\n",
|
|
" Document(page_content='0', lookup_str='', metadata={'source': 'layout-parser-paper-fast.pdf', 'filename': 'layout-parser-paper-fast.pdf', 'page_number': 1, 'category': 'UncategorizedText'}, lookup_index=0),\n",
|
|
" Document(page_content='2', lookup_str='', metadata={'source': 'layout-parser-paper-fast.pdf', 'filename': 'layout-parser-paper-fast.pdf', 'page_number': 1, 'category': 'UncategorizedText'}, lookup_index=0),\n",
|
|
" Document(page_content='n', lookup_str='', metadata={'source': 'layout-parser-paper-fast.pdf', 'filename': 'layout-parser-paper-fast.pdf', 'page_number': 1, 'category': 'Title'}, lookup_index=0)]"
|
|
]
|
|
},
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"docs[:5]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "8de9ef16",
|
|
"metadata": {},
|
|
"source": [
|
|
"## PDF Example\n",
|
|
"\n",
|
|
"Processing PDF documents works exactly the same way. Unstructured detects the file type and extracts the same types of `elements`. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "8ca8a648",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"!wget https://raw.githubusercontent.com/Unstructured-IO/unstructured/main/example-docs/layout-parser-paper.pdf -P \"../../\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "686e5eb4",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"loader = UnstructuredFileLoader(\"./example_data/layout-parser-paper.pdf\", mode=\"elements\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c90f0e94",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"docs = loader.load()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "6ec859d8",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[Document(page_content='LayoutParser : A Unified Toolkit for Deep Learning Based Document Image Analysis', lookup_str='', metadata={'source': '../../layout-parser-paper.pdf'}, lookup_index=0),\n",
|
|
" Document(page_content='Zejiang Shen 1 ( (ea)\\n ), Ruochen Zhang 2 , Melissa Dell 3 , Benjamin Charles Germain Lee 4 , Jacob Carlson 3 , and Weining Li 5', lookup_str='', metadata={'source': '../../layout-parser-paper.pdf'}, lookup_index=0),\n",
|
|
" Document(page_content='Allen Institute for AI shannons@allenai.org', lookup_str='', metadata={'source': '../../layout-parser-paper.pdf'}, lookup_index=0),\n",
|
|
" Document(page_content='Brown University ruochen zhang@brown.edu', lookup_str='', metadata={'source': '../../layout-parser-paper.pdf'}, lookup_index=0),\n",
|
|
" Document(page_content='Harvard University { melissadell,jacob carlson } @fas.harvard.edu', lookup_str='', metadata={'source': '../../layout-parser-paper.pdf'}, lookup_index=0)]"
|
|
]
|
|
},
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"docs[:5]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "f52b04cb",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.13"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|