langchain/tests/integration_tests/vectorstores/test_qdrant.py
bnassivet 9355e3f5f5
qdrant vector store - search with relevancy scores (#5781)
Implementation of similarity_search_with_relevance_scores for quadrant
vector store.
As implemented the method is also compatible with other capacities such
as filtering.

Integration tests updated.


#### Who can review?

Tag maintainers/contributors who might be interested:

  VectorStores / Retrievers / Memory
  - @dev2049
2023-06-07 19:26:40 -07:00

411 lines
13 KiB
Python

"""Test Qdrant functionality."""
import tempfile
from typing import Callable, Optional
import pytest
from qdrant_client.http import models as rest
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.vectorstores import Qdrant
from tests.integration_tests.vectorstores.fake_embeddings import (
ConsistentFakeEmbeddings,
)
@pytest.mark.parametrize("batch_size", [1, 64])
@pytest.mark.parametrize(
["content_payload_key", "metadata_payload_key"],
[
(Qdrant.CONTENT_KEY, Qdrant.METADATA_KEY),
("foo", "bar"),
(Qdrant.CONTENT_KEY, "bar"),
("foo", Qdrant.METADATA_KEY),
],
)
def test_qdrant_similarity_search(
batch_size: int, content_payload_key: str, metadata_payload_key: str
) -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch = Qdrant.from_texts(
texts,
ConsistentFakeEmbeddings(),
location=":memory:",
content_payload_key=content_payload_key,
metadata_payload_key=metadata_payload_key,
batch_size=batch_size,
)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
@pytest.mark.parametrize("batch_size", [1, 64])
def test_qdrant_add_documents(batch_size: int) -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch: Qdrant = Qdrant.from_texts(
texts, ConsistentFakeEmbeddings(), location=":memory:", batch_size=batch_size
)
new_texts = ["foobar", "foobaz"]
docsearch.add_documents(
[Document(page_content=content) for content in new_texts], batch_size=batch_size
)
output = docsearch.similarity_search("foobar", k=1)
# StatefulFakeEmbeddings return the same query embedding as the first document
# embedding computed in `embedding.embed_documents`. Thus, "foo" embedding is the
# same as "foobar" embedding
assert output == [Document(page_content="foobar")] or output == [
Document(page_content="foo")
]
@pytest.mark.parametrize("batch_size", [1, 64])
def test_qdrant_add_texts_returns_all_ids(batch_size: int) -> None:
docsearch: Qdrant = Qdrant.from_texts(
["foobar"],
ConsistentFakeEmbeddings(),
location=":memory:",
batch_size=batch_size,
)
ids = docsearch.add_texts(["foo", "bar", "baz"])
assert 3 == len(ids)
assert 3 == len(set(ids))
@pytest.mark.parametrize("batch_size", [1, 64])
@pytest.mark.parametrize(
["content_payload_key", "metadata_payload_key"],
[
(Qdrant.CONTENT_KEY, Qdrant.METADATA_KEY),
("test_content", "test_payload"),
(Qdrant.CONTENT_KEY, "payload_test"),
("content_test", Qdrant.METADATA_KEY),
],
)
def test_qdrant_with_metadatas(
batch_size: int, content_payload_key: str, metadata_payload_key: str
) -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = Qdrant.from_texts(
texts,
ConsistentFakeEmbeddings(),
metadatas=metadatas,
location=":memory:",
content_payload_key=content_payload_key,
metadata_payload_key=metadata_payload_key,
batch_size=batch_size,
)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo", metadata={"page": 0})]
@pytest.mark.parametrize("batch_size", [1, 64])
def test_qdrant_similarity_search_filters(batch_size: int) -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [
{"page": i, "metadata": {"page": i + 1, "pages": [i + 2, -1]}}
for i in range(len(texts))
]
docsearch = Qdrant.from_texts(
texts,
ConsistentFakeEmbeddings(),
metadatas=metadatas,
location=":memory:",
batch_size=batch_size,
)
output = docsearch.similarity_search(
"foo", k=1, filter={"page": 1, "metadata": {"page": 2, "pages": [3]}}
)
assert output == [
Document(
page_content="bar",
metadata={"page": 1, "metadata": {"page": 2, "pages": [3, -1]}},
)
]
def test_qdrant_similarity_search_with_relevance_score_no_threshold() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [
{"page": i, "metadata": {"page": i + 1, "pages": [i + 2, -1]}}
for i in range(len(texts))
]
docsearch = Qdrant.from_texts(
texts,
ConsistentFakeEmbeddings(),
metadatas=metadatas,
location=":memory:",
)
output = docsearch.similarity_search_with_relevance_scores(
"foo", k=3, score_threshold=None
)
assert len(output) == 3
for i in range(len(output)):
assert round(output[i][1], 2) >= 0
assert round(output[i][1], 2) <= 1
def test_qdrant_similarity_search_with_relevance_score_with_threshold() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [
{"page": i, "metadata": {"page": i + 1, "pages": [i + 2, -1]}}
for i in range(len(texts))
]
docsearch = Qdrant.from_texts(
texts,
ConsistentFakeEmbeddings(),
metadatas=metadatas,
location=":memory:",
)
score_threshold = 0.98
kwargs = {"score_threshold": score_threshold}
output = docsearch.similarity_search_with_relevance_scores("foo", k=3, **kwargs)
assert len(output) == 1
assert all([score >= score_threshold for _, score in output])
def test_qdrant_similarity_search_with_relevance_score_with_threshold_and_filter() -> (
None
):
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [
{"page": i, "metadata": {"page": i + 1, "pages": [i + 2, -1]}}
for i in range(len(texts))
]
docsearch = Qdrant.from_texts(
texts,
ConsistentFakeEmbeddings(),
metadatas=metadatas,
location=":memory:",
)
score_threshold = 0.99 # for almost exact match
# test negative filter condition
negative_filter = {"page": 1, "metadata": {"page": 2, "pages": [3]}}
kwargs = {"filter": negative_filter, "score_threshold": score_threshold}
output = docsearch.similarity_search_with_relevance_scores("foo", k=3, **kwargs)
assert len(output) == 0
# test positive filter condition
positive_filter = {"page": 0, "metadata": {"page": 1, "pages": [2]}}
kwargs = {"filter": positive_filter, "score_threshold": score_threshold}
output = docsearch.similarity_search_with_relevance_scores("foo", k=3, **kwargs)
assert len(output) == 1
assert all([score >= score_threshold for _, score in output])
def test_qdrant_similarity_search_filters_with_qdrant_filters() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [
{"page": i, "details": {"page": i + 1, "pages": [i + 2, -1]}}
for i in range(len(texts))
]
docsearch = Qdrant.from_texts(
texts,
ConsistentFakeEmbeddings(),
metadatas=metadatas,
location=":memory:",
)
qdrant_filter = rest.Filter(
must=[
rest.FieldCondition(
key="metadata.page",
match=rest.MatchValue(value=1),
),
rest.FieldCondition(
key="metadata.details.page",
match=rest.MatchValue(value=2),
),
rest.FieldCondition(
key="metadata.details.pages",
match=rest.MatchAny(any=[3]),
),
]
)
output = docsearch.similarity_search("foo", k=1, filter=qdrant_filter)
assert output == [
Document(
page_content="bar",
metadata={"page": 1, "details": {"page": 2, "pages": [3, -1]}},
)
]
@pytest.mark.parametrize("batch_size", [1, 64])
@pytest.mark.parametrize(
["content_payload_key", "metadata_payload_key"],
[
(Qdrant.CONTENT_KEY, Qdrant.METADATA_KEY),
("test_content", "test_payload"),
(Qdrant.CONTENT_KEY, "payload_test"),
("content_test", Qdrant.METADATA_KEY),
],
)
def test_qdrant_max_marginal_relevance_search(
batch_size: int, content_payload_key: str, metadata_payload_key: str
) -> None:
"""Test end to end construction and MRR search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = Qdrant.from_texts(
texts,
ConsistentFakeEmbeddings(),
metadatas=metadatas,
location=":memory:",
content_payload_key=content_payload_key,
metadata_payload_key=metadata_payload_key,
batch_size=batch_size,
)
output = docsearch.max_marginal_relevance_search("foo", k=2, fetch_k=3)
assert output == [
Document(page_content="foo", metadata={"page": 0}),
Document(page_content="bar", metadata={"page": 1}),
]
@pytest.mark.parametrize(
["embeddings", "embedding_function"],
[
(ConsistentFakeEmbeddings(), None),
(ConsistentFakeEmbeddings().embed_query, None),
(None, ConsistentFakeEmbeddings().embed_query),
],
)
def test_qdrant_embedding_interface(
embeddings: Optional[Embeddings], embedding_function: Optional[Callable]
) -> None:
from qdrant_client import QdrantClient
client = QdrantClient(":memory:")
collection_name = "test"
Qdrant(
client,
collection_name,
embeddings=embeddings,
embedding_function=embedding_function,
)
@pytest.mark.parametrize(
["embeddings", "embedding_function"],
[
(ConsistentFakeEmbeddings(), ConsistentFakeEmbeddings().embed_query),
(None, None),
],
)
def test_qdrant_embedding_interface_raises(
embeddings: Optional[Embeddings], embedding_function: Optional[Callable]
) -> None:
from qdrant_client import QdrantClient
client = QdrantClient(":memory:")
collection_name = "test"
with pytest.raises(ValueError):
Qdrant(
client,
collection_name,
embeddings=embeddings,
embedding_function=embedding_function,
)
def test_qdrant_stores_duplicated_texts() -> None:
from qdrant_client import QdrantClient
from qdrant_client.http import models as rest
client = QdrantClient(":memory:")
collection_name = "test"
client.recreate_collection(
collection_name,
vectors_config=rest.VectorParams(size=10, distance=rest.Distance.COSINE),
)
vec_store = Qdrant(
client,
collection_name,
embeddings=ConsistentFakeEmbeddings(),
)
ids = vec_store.add_texts(["abc", "abc"], [{"a": 1}, {"a": 2}])
assert 2 == len(set(ids))
assert 2 == client.count(collection_name).count
def test_qdrant_from_texts_stores_duplicated_texts() -> None:
from qdrant_client import QdrantClient
with tempfile.TemporaryDirectory() as tmpdir:
vec_store = Qdrant.from_texts(
["abc", "abc"],
ConsistentFakeEmbeddings(),
collection_name="test",
path=str(tmpdir),
)
del vec_store
client = QdrantClient(path=str(tmpdir))
assert 2 == client.count("test").count
@pytest.mark.parametrize("batch_size", [1, 64])
def test_qdrant_from_texts_stores_ids(batch_size: int) -> None:
from qdrant_client import QdrantClient
with tempfile.TemporaryDirectory() as tmpdir:
ids = [
"fa38d572-4c31-4579-aedc-1960d79df6df",
"cdc1aa36-d6ab-4fb2-8a94-56674fd27484",
]
vec_store = Qdrant.from_texts(
["abc", "def"],
ConsistentFakeEmbeddings(),
ids=ids,
collection_name="test",
path=str(tmpdir),
batch_size=batch_size,
)
del vec_store
client = QdrantClient(path=str(tmpdir))
assert 2 == client.count("test").count
stored_ids = [point.id for point in client.scroll("test")[0]]
assert set(ids) == set(stored_ids)
@pytest.mark.parametrize("batch_size", [1, 64])
def test_qdrant_add_texts_stores_ids(batch_size: int) -> None:
from qdrant_client import QdrantClient
ids = [
"fa38d572-4c31-4579-aedc-1960d79df6df",
"cdc1aa36-d6ab-4fb2-8a94-56674fd27484",
]
client = QdrantClient(":memory:")
collection_name = "test"
client.recreate_collection(
collection_name,
vectors_config=rest.VectorParams(size=10, distance=rest.Distance.COSINE),
)
vec_store = Qdrant(client, "test", ConsistentFakeEmbeddings())
returned_ids = vec_store.add_texts(["abc", "def"], ids=ids, batch_size=batch_size)
assert all(first == second for first, second in zip(ids, returned_ids))
assert 2 == client.count("test").count
stored_ids = [point.id for point in client.scroll("test")[0]]
assert set(ids) == set(stored_ids)