forked from Archives/langchain
985496f4be
Big docs refactor! Motivation is to make it easier for people to find resources they are looking for. To accomplish this, there are now three main sections: - Getting Started: steps for getting started, walking through most core functionality - Modules: these are different modules of functionality that langchain provides. Each part here has a "getting started", "how to", "key concepts" and "reference" section (except in a few select cases where it didnt easily fit). - Use Cases: this is to separate use cases (like summarization, question answering, evaluation, etc) from the modules, and provide a different entry point to the code base. There is also a full reference section, as well as extra resources (glossary, gallery, etc) Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
176 lines
4.1 KiB
Plaintext
176 lines
4.1 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "00695447",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Adding Memory To an LLMChain\n",
|
|
"\n",
|
|
"This notebook goes over how to use the Memory class with an LLMChain. For the purposes of this walkthrough, we will add the `ConversationBufferMemory` class, although this can be any memory class."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "9f1aaf47",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.chains.conversation.memory import ConversationBufferMemory\n",
|
|
"from langchain import OpenAI, LLMChain, PromptTemplate"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "4b066ced",
|
|
"metadata": {},
|
|
"source": [
|
|
"The most important step is setting up the prompt correctly. In the below prompt, we have two input keys: one for the actual input, another for the input from the Memory class. Importantly, we make sure the keys in the PromptTemplate and the ConversationBufferMemory match up (`chat_history`)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "e5501eda",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"template = \"\"\"You are a chatbot having a conversation with a human.\n",
|
|
"\n",
|
|
"{chat_history}\n",
|
|
"Human: {human_input}\n",
|
|
"Chatbot:\"\"\"\n",
|
|
"\n",
|
|
"prompt = PromptTemplate(\n",
|
|
" input_variables=[\"chat_history\", \"human_input\"], \n",
|
|
" template=template\n",
|
|
")\n",
|
|
"memory = ConversationBufferMemory(memory_key=\"chat_history\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "f6566275",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"llm_chain = LLMChain(\n",
|
|
" llm=OpenAI(), \n",
|
|
" prompt=prompt, \n",
|
|
" verbose=True, \n",
|
|
" memory=memory,\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "e2b189dc",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\n",
|
|
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
|
|
"Prompt after formatting:\n",
|
|
"\u001b[32;1m\u001b[1;3mYou are a chatbot having a conversation with a human.\n",
|
|
"\n",
|
|
"\n",
|
|
"Human: Hi there my friend\n",
|
|
"Chatbot:\u001b[0m\n",
|
|
"\n",
|
|
"\u001b[1m> Finished LLMChain chain.\u001b[0m\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"' Hi there, how are you doing today?'"
|
|
]
|
|
},
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"llm_chain.predict(human_input=\"Hi there my friend\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "a902729f",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\n",
|
|
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
|
|
"Prompt after formatting:\n",
|
|
"\u001b[32;1m\u001b[1;3mYou are a chatbot having a conversation with a human.\n",
|
|
"\n",
|
|
"\n",
|
|
"Human: Hi there my friend\n",
|
|
"AI: Hi there, how are you doing today?\n",
|
|
"Human: Not to bad - how are you?\n",
|
|
"Chatbot:\u001b[0m\n",
|
|
"\n",
|
|
"\u001b[1m> Finished LLMChain chain.\u001b[0m\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"\" I'm doing great, thank you for asking!\""
|
|
]
|
|
},
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"llm_chain.predict(human_input=\"Not to bad - how are you?\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "ae5309bb",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.9"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|