forked from Archives/langchain
be7a8e0824
Co-authored-by: Tyler Hutcherson <tyler.hutcherson@redis.com>
61 lines
2.1 KiB
Python
61 lines
2.1 KiB
Python
"""Test Redis functionality."""
|
|
from langchain.docstore.document import Document
|
|
from langchain.vectorstores.redis import Redis
|
|
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
|
|
|
|
TEST_INDEX_NAME = "test"
|
|
TEST_REDIS_URL = "redis://localhost:6379"
|
|
TEST_SINGLE_RESULT = [Document(page_content="foo")]
|
|
TEST_RESULT = [Document(page_content="foo"), Document(page_content="foo")]
|
|
|
|
|
|
def drop(index_name: str) -> bool:
|
|
return Redis.drop_index(
|
|
index_name=index_name, delete_documents=True, redis_url=TEST_REDIS_URL
|
|
)
|
|
|
|
|
|
def test_redis() -> None:
|
|
"""Test end to end construction and search."""
|
|
texts = ["foo", "bar", "baz"]
|
|
docsearch = Redis.from_texts(texts, FakeEmbeddings(), redis_url=TEST_REDIS_URL)
|
|
output = docsearch.similarity_search("foo", k=1)
|
|
assert output == TEST_SINGLE_RESULT
|
|
assert drop(docsearch.index_name)
|
|
|
|
|
|
def test_redis_new_vector() -> None:
|
|
"""Test adding a new document"""
|
|
texts = ["foo", "bar", "baz"]
|
|
docsearch = Redis.from_texts(texts, FakeEmbeddings(), redis_url=TEST_REDIS_URL)
|
|
docsearch.add_texts(["foo"])
|
|
output = docsearch.similarity_search("foo", k=2)
|
|
assert output == TEST_RESULT
|
|
assert drop(docsearch.index_name)
|
|
|
|
|
|
def test_redis_from_existing() -> None:
|
|
"""Test adding a new document"""
|
|
texts = ["foo", "bar", "baz"]
|
|
Redis.from_texts(
|
|
texts, FakeEmbeddings(), index_name=TEST_INDEX_NAME, redis_url=TEST_REDIS_URL
|
|
)
|
|
# Test creating from an existing
|
|
docsearch2 = Redis.from_existing_index(
|
|
FakeEmbeddings(), index_name=TEST_INDEX_NAME, redis_url=TEST_REDIS_URL
|
|
)
|
|
output = docsearch2.similarity_search("foo", k=1)
|
|
assert output == TEST_SINGLE_RESULT
|
|
|
|
|
|
def test_redis_add_texts_to_existing() -> None:
|
|
"""Test adding a new document"""
|
|
# Test creating from an existing
|
|
docsearch = Redis.from_existing_index(
|
|
FakeEmbeddings(), index_name=TEST_INDEX_NAME, redis_url=TEST_REDIS_URL
|
|
)
|
|
docsearch.add_texts(["foo"])
|
|
output = docsearch.similarity_search("foo", k=2)
|
|
assert output == TEST_RESULT
|
|
assert drop(TEST_INDEX_NAME)
|