langchain/tests/integration_tests/vectorstores/test_weaviate.py
yujiosaka 6561efebb7
Accept uuids kwargs for weaviate (#4800)
# Accept uuids kwargs for weaviate

Fixes #4791
2023-05-16 15:26:46 -07:00

225 lines
8.4 KiB
Python

"""Test Weaviate functionality."""
import logging
import os
import uuid
from typing import Generator, Union
import pytest
from weaviate import Client
from langchain.docstore.document import Document
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores.weaviate import Weaviate
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
logging.basicConfig(level=logging.DEBUG)
"""
cd tests/integration_tests/vectorstores/docker-compose
docker compose -f weaviate.yml up
"""
class TestWeaviate:
@classmethod
def setup_class(cls) -> None:
if not os.getenv("OPENAI_API_KEY"):
raise ValueError("OPENAI_API_KEY environment variable is not set")
@pytest.fixture(scope="class", autouse=True)
def weaviate_url(self) -> Union[str, Generator[str, None, None]]:
"""Return the weaviate url."""
url = "http://localhost:8080"
yield url
# Clear the test index
client = Client(url)
client.schema.delete_all()
@pytest.mark.vcr(ignore_localhost=True)
def test_similarity_search_without_metadata(
self, weaviate_url: str, embedding_openai: OpenAIEmbeddings
) -> None:
"""Test end to end construction and search without metadata."""
texts = ["foo", "bar", "baz"]
docsearch = Weaviate.from_texts(
texts,
embedding_openai,
weaviate_url=weaviate_url,
)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
@pytest.mark.vcr(ignore_localhost=True)
def test_similarity_search_with_metadata(
self, weaviate_url: str, embedding_openai: OpenAIEmbeddings
) -> None:
"""Test end to end construction and search with metadata."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = Weaviate.from_texts(
texts, embedding_openai, metadatas=metadatas, weaviate_url=weaviate_url
)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo", metadata={"page": 0})]
@pytest.mark.vcr(ignore_localhost=True)
def test_similarity_search_with_metadata_and_filter(
self, weaviate_url: str, embedding_openai: OpenAIEmbeddings
) -> None:
"""Test end to end construction and search with metadata."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = Weaviate.from_texts(
texts, embedding_openai, metadatas=metadatas, weaviate_url=weaviate_url
)
output = docsearch.similarity_search(
"foo",
k=2,
where_filter={"path": ["page"], "operator": "Equal", "valueNumber": 0},
)
assert output == [Document(page_content="foo", metadata={"page": 0})]
@pytest.mark.vcr(ignore_localhost=True)
def test_similarity_search_with_uuids(
self, weaviate_url: str, embedding_openai: OpenAIEmbeddings
) -> None:
"""Test end to end construction and search with uuids."""
texts = ["foo", "bar", "baz"]
# Weaviate replaces the object if the UUID already exists
uuids = [uuid.uuid5(uuid.NAMESPACE_DNS, "same-name") for text in texts]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = Weaviate.from_texts(
texts,
embedding_openai,
metadatas=metadatas,
weaviate_url=weaviate_url,
uuids=uuids,
)
output = docsearch.similarity_search("foo", k=2)
assert len(output) == 1
@pytest.mark.vcr(ignore_localhost=True)
def test_max_marginal_relevance_search(
self, weaviate_url: str, embedding_openai: OpenAIEmbeddings
) -> None:
"""Test end to end construction and MRR search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = Weaviate.from_texts(
texts, embedding_openai, metadatas=metadatas, weaviate_url=weaviate_url
)
# if lambda=1 the algorithm should be equivalent to standard ranking
standard_ranking = docsearch.similarity_search("foo", k=2)
output = docsearch.max_marginal_relevance_search(
"foo", k=2, fetch_k=3, lambda_mult=1.0
)
assert output == standard_ranking
# if lambda=0 the algorithm should favour maximal diversity
output = docsearch.max_marginal_relevance_search(
"foo", k=2, fetch_k=3, lambda_mult=0.0
)
assert output == [
Document(page_content="foo", metadata={"page": 0}),
Document(page_content="bar", metadata={"page": 1}),
]
@pytest.mark.vcr(ignore_localhost=True)
def test_max_marginal_relevance_search_by_vector(
self, weaviate_url: str, embedding_openai: OpenAIEmbeddings
) -> None:
"""Test end to end construction and MRR search by vector."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = Weaviate.from_texts(
texts, embedding_openai, metadatas=metadatas, weaviate_url=weaviate_url
)
foo_embedding = embedding_openai.embed_query("foo")
# if lambda=1 the algorithm should be equivalent to standard ranking
standard_ranking = docsearch.similarity_search("foo", k=2)
output = docsearch.max_marginal_relevance_search_by_vector(
foo_embedding, k=2, fetch_k=3, lambda_mult=1.0
)
assert output == standard_ranking
# if lambda=0 the algorithm should favour maximal diversity
output = docsearch.max_marginal_relevance_search_by_vector(
foo_embedding, k=2, fetch_k=3, lambda_mult=0.0
)
assert output == [
Document(page_content="foo", metadata={"page": 0}),
Document(page_content="bar", metadata={"page": 1}),
]
@pytest.mark.vcr(ignore_localhost=True)
def test_max_marginal_relevance_search_with_filter(
self, weaviate_url: str, embedding_openai: OpenAIEmbeddings
) -> None:
"""Test end to end construction and MRR search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = Weaviate.from_texts(
texts, embedding_openai, metadatas=metadatas, weaviate_url=weaviate_url
)
where_filter = {"path": ["page"], "operator": "Equal", "valueNumber": 0}
# if lambda=1 the algorithm should be equivalent to standard ranking
standard_ranking = docsearch.similarity_search(
"foo", k=2, where_filter=where_filter
)
output = docsearch.max_marginal_relevance_search(
"foo", k=2, fetch_k=3, lambda_mult=1.0, where_filter=where_filter
)
assert output == standard_ranking
# if lambda=0 the algorithm should favour maximal diversity
output = docsearch.max_marginal_relevance_search(
"foo", k=2, fetch_k=3, lambda_mult=0.0, where_filter=where_filter
)
assert output == [
Document(page_content="foo", metadata={"page": 0}),
]
def test_add_texts_with_given_embedding(self, weaviate_url: str) -> None:
texts = ["foo", "bar", "baz"]
embedding = FakeEmbeddings()
docsearch = Weaviate.from_texts(
texts, embedding=embedding, weaviate_url=weaviate_url
)
docsearch.add_texts(["foo"])
output = docsearch.similarity_search_by_vector(
embedding.embed_query("foo"), k=2
)
assert output == [
Document(page_content="foo"),
Document(page_content="foo"),
]
def test_add_texts_with_given_uuids(self, weaviate_url: str) -> None:
texts = ["foo", "bar", "baz"]
embedding = FakeEmbeddings()
uuids = [uuid.uuid5(uuid.NAMESPACE_DNS, text) for text in texts]
docsearch = Weaviate.from_texts(
texts,
embedding=embedding,
weaviate_url=weaviate_url,
uuids=uuids,
)
# Weaviate replaces the object if the UUID already exists
docsearch.add_texts(["foo"], uuids=[uuids[0]])
output = docsearch.similarity_search_by_vector(
embedding.embed_query("foo"), k=2
)
assert output[0] == Document(page_content="foo")
assert output[1] != Document(page_content="foo")