forked from Archives/langchain
be7a8e0824
Co-authored-by: Tyler Hutcherson <tyler.hutcherson@redis.com>
56 lines
1.9 KiB
Python
56 lines
1.9 KiB
Python
"""Test Redis cache functionality."""
|
|
import redis
|
|
|
|
import langchain
|
|
from langchain.cache import RedisCache, RedisSemanticCache
|
|
from langchain.schema import Generation, LLMResult
|
|
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
|
|
from tests.unit_tests.llms.fake_llm import FakeLLM
|
|
|
|
REDIS_TEST_URL = "redis://localhost:6379"
|
|
|
|
|
|
def test_redis_cache() -> None:
|
|
langchain.llm_cache = RedisCache(redis_=redis.Redis.from_url(REDIS_TEST_URL))
|
|
llm = FakeLLM()
|
|
params = llm.dict()
|
|
params["stop"] = None
|
|
llm_string = str(sorted([(k, v) for k, v in params.items()]))
|
|
langchain.llm_cache.update("foo", llm_string, [Generation(text="fizz")])
|
|
output = llm.generate(["foo"])
|
|
print(output)
|
|
expected_output = LLMResult(
|
|
generations=[[Generation(text="fizz")]],
|
|
llm_output={},
|
|
)
|
|
print(expected_output)
|
|
assert output == expected_output
|
|
langchain.llm_cache.redis.flushall()
|
|
|
|
|
|
def test_redis_semantic_cache() -> None:
|
|
langchain.llm_cache = RedisSemanticCache(
|
|
embedding=FakeEmbeddings(), redis_url=REDIS_TEST_URL, score_threshold=0.1
|
|
)
|
|
llm = FakeLLM()
|
|
params = llm.dict()
|
|
params["stop"] = None
|
|
llm_string = str(sorted([(k, v) for k, v in params.items()]))
|
|
langchain.llm_cache.update("foo", llm_string, [Generation(text="fizz")])
|
|
output = llm.generate(
|
|
["bar"]
|
|
) # foo and bar will have the same embedding produced by FakeEmbeddings
|
|
expected_output = LLMResult(
|
|
generations=[[Generation(text="fizz")]],
|
|
llm_output={},
|
|
)
|
|
assert output == expected_output
|
|
# clear the cache
|
|
langchain.llm_cache.clear(llm_string=llm_string)
|
|
output = llm.generate(
|
|
["bar"]
|
|
) # foo and bar will have the same embedding produced by FakeEmbeddings
|
|
# expect different output now without cached result
|
|
assert output != expected_output
|
|
langchain.llm_cache.clear(llm_string=llm_string)
|