langchain/docs/modules/models/text_embedding/examples/sagemaker-endpoint.ipynb
Zander Chase 61d40ba042
Fix Sagemaker Batch Endpoints (#3249)
Add different typing for @evandiewald 's heplful PR

---------

Co-authored-by: Evan Diewald <evandiewald@gmail.com>
2023-04-22 08:49:51 -07:00

136 lines
3.5 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "1f83f273",
"metadata": {},
"source": [
"# SageMaker Endpoint Embeddings\n",
"\n",
"Let's load the SageMaker Endpoints Embeddings class. The class can be used if you host, e.g. your own Hugging Face model on SageMaker.\n",
"\n",
"For instructions on how to do this, please see [here](https://www.philschmid.de/custom-inference-huggingface-sagemaker). **Note**: In order to handle batched requests, you will need to adjust the return line in the `predict_fn()` function within the custom `inference.py` script:\n",
"\n",
"Change from\n",
"\n",
"`return {\"vectors\": sentence_embeddings[0].tolist()}`\n",
"\n",
"to:\n",
"\n",
"`return {\"vectors\": sentence_embeddings.tolist()}`."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "88d366bd",
"metadata": {},
"outputs": [],
"source": [
"!pip3 install langchain boto3"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "1e9b926a",
"metadata": {},
"outputs": [],
"source": [
"from typing import Dict, List\n",
"from langchain.embeddings import SagemakerEndpointEmbeddings\n",
"from langchain.llms.sagemaker_endpoint import ContentHandlerBase\n",
"import json\n",
"\n",
"\n",
"class ContentHandler(ContentHandlerBase):\n",
" content_type = \"application/json\"\n",
" accepts = \"application/json\"\n",
"\n",
" def transform_input(self, inputs: list[str], model_kwargs: Dict) -> bytes:\n",
" input_str = json.dumps({\"inputs\": inputs, **model_kwargs})\n",
" return input_str.encode('utf-8')\n",
"\n",
" def transform_output(self, output: bytes) -> List[List[float]]:\n",
" response_json = json.loads(output.read().decode(\"utf-8\"))\n",
" return response_json[\"vectors\"]\n",
"\n",
"content_handler = ContentHandler()\n",
"\n",
"\n",
"embeddings = SagemakerEndpointEmbeddings(\n",
" # endpoint_name=\"endpoint-name\", \n",
" # credentials_profile_name=\"credentials-profile-name\", \n",
" endpoint_name=\"huggingface-pytorch-inference-2023-03-21-16-14-03-834\", \n",
" region_name=\"us-east-1\", \n",
" content_handler=content_handler\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fe9797b8",
"metadata": {},
"outputs": [],
"source": [
"query_result = embeddings.embed_query(\"foo\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "76f1b752",
"metadata": {},
"outputs": [],
"source": [
"doc_results = embeddings.embed_documents([\"foo\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fff99b21",
"metadata": {},
"outputs": [],
"source": [
"doc_results"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aaad49f8",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
},
"vscode": {
"interpreter": {
"hash": "7377c2ccc78bc62c2683122d48c8cd1fb85a53850a1b1fc29736ed39852c9885"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}