forked from Archives/langchain
12f868b292
Technically a duplicate fix to #1619 but with unit tests and a small documentation update - Propagate `filter` arg in Chroma `similarity_search` to delegated call to `similarity_search_with_score` - Add `filter` arg to `similarity_search_by_vector` - Clarify doc strings on FakeEmbeddings
116 lines
4.0 KiB
Python
116 lines
4.0 KiB
Python
"""Test Chroma functionality."""
|
|
from langchain.docstore.document import Document
|
|
from langchain.vectorstores import Chroma
|
|
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
|
|
|
|
|
|
def test_chroma() -> None:
|
|
"""Test end to end construction and search."""
|
|
texts = ["foo", "bar", "baz"]
|
|
docsearch = Chroma.from_texts(
|
|
collection_name="test_collection", texts=texts, embedding=FakeEmbeddings()
|
|
)
|
|
output = docsearch.similarity_search("foo", k=1)
|
|
assert output == [Document(page_content="foo")]
|
|
|
|
|
|
def test_chroma_with_metadatas() -> None:
|
|
"""Test end to end construction and search."""
|
|
texts = ["foo", "bar", "baz"]
|
|
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
|
docsearch = Chroma.from_texts(
|
|
collection_name="test_collection",
|
|
texts=texts,
|
|
embedding=FakeEmbeddings(),
|
|
metadatas=metadatas,
|
|
)
|
|
output = docsearch.similarity_search("foo", k=1)
|
|
assert output == [Document(page_content="foo", metadata={"page": "0"})]
|
|
|
|
|
|
def test_chroma_with_metadatas_with_scores() -> None:
|
|
"""Test end to end construction and scored search."""
|
|
texts = ["foo", "bar", "baz"]
|
|
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
|
docsearch = Chroma.from_texts(
|
|
collection_name="test_collection",
|
|
texts=texts,
|
|
embedding=FakeEmbeddings(),
|
|
metadatas=metadatas,
|
|
)
|
|
output = docsearch.similarity_search_with_score("foo", k=1)
|
|
assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0.0)]
|
|
|
|
|
|
def test_chroma_search_filter() -> None:
|
|
"""Test end to end construction and search with metadata filtering."""
|
|
texts = ["far", "bar", "baz"]
|
|
metadatas = [{"first_letter": "{}".format(text[0])} for text in texts]
|
|
docsearch = Chroma.from_texts(
|
|
collection_name="test_collection",
|
|
texts=texts,
|
|
embedding=FakeEmbeddings(),
|
|
metadatas=metadatas,
|
|
)
|
|
output = docsearch.similarity_search("far", k=1, filter={"first_letter": "f"})
|
|
assert output == [Document(page_content="far", metadata={"first_letter": "f"})]
|
|
output = docsearch.similarity_search("far", k=1, filter={"first_letter": "b"})
|
|
assert output == [Document(page_content="bar", metadata={"first_letter": "b"})]
|
|
|
|
|
|
def test_chroma_search_filter_with_scores() -> None:
|
|
"""Test end to end construction and scored search with metadata filtering."""
|
|
texts = ["far", "bar", "baz"]
|
|
metadatas = [{"first_letter": "{}".format(text[0])} for text in texts]
|
|
docsearch = Chroma.from_texts(
|
|
collection_name="test_collection",
|
|
texts=texts,
|
|
embedding=FakeEmbeddings(),
|
|
metadatas=metadatas,
|
|
)
|
|
output = docsearch.similarity_search_with_score(
|
|
"far", k=1, filter={"first_letter": "f"}
|
|
)
|
|
assert output == [
|
|
(Document(page_content="far", metadata={"first_letter": "f"}), 0.0)
|
|
]
|
|
output = docsearch.similarity_search_with_score(
|
|
"far", k=1, filter={"first_letter": "b"}
|
|
)
|
|
assert output == [
|
|
(Document(page_content="bar", metadata={"first_letter": "b"}), 1.0)
|
|
]
|
|
|
|
|
|
def test_chroma_with_persistence() -> None:
|
|
"""Test end to end construction and search, with persistence."""
|
|
chroma_persist_dir = "./tests/persist_dir"
|
|
collection_name = "test_collection"
|
|
texts = ["foo", "bar", "baz"]
|
|
docsearch = Chroma.from_texts(
|
|
collection_name=collection_name,
|
|
texts=texts,
|
|
embedding=FakeEmbeddings(),
|
|
persist_directory=chroma_persist_dir,
|
|
)
|
|
|
|
output = docsearch.similarity_search("foo", k=1)
|
|
assert output == [Document(page_content="foo")]
|
|
|
|
docsearch.persist()
|
|
|
|
# Get a new VectorStore from the persisted directory
|
|
docsearch = Chroma(
|
|
collection_name=collection_name,
|
|
embedding_function=FakeEmbeddings(),
|
|
persist_directory=chroma_persist_dir,
|
|
)
|
|
output = docsearch.similarity_search("foo", k=1)
|
|
|
|
# Clean up
|
|
docsearch.delete_collection()
|
|
|
|
# Persist doesn't need to be called again
|
|
# Data will be automatically persisted on object deletion
|
|
# Or on program exit
|