.github/workflows | ||
docs | ||
langchain | ||
tests | ||
.coveragerc | ||
.flake8 | ||
.gitignore | ||
CONTRIBUTING.md | ||
LICENSE | ||
Makefile | ||
poetry.lock | ||
poetry.toml | ||
pyproject.toml | ||
README.md | ||
readthedocs.yml |
🦜️🔗 LangChain
⚡ Building applications with LLMs through composability ⚡
Quick Install
pip install langchain
🤔 What is this?
Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. But using these LLMs in isolation is often not enough to create a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.
This library is aimed at assisting in the development of those types of applications.
📖 Documentation
Please see here for full documentation on:
- Getting started (installation, setting up the environment, simple examples)
- How-To examples (demos, integrations, helper functions)
- Reference (full API docs) Resources (high-level explanation of core concepts)
🚀 What can this help with?
There are four main areas that LangChain is designed to help with. These are, in increasing order of complexity:
📃 LLMs and Prompts:
This includes prompt management, prompt optimization, generic interface for all LLMs, and common utilities for working with LLMs.
🔗 Chains:
Chains go beyond just a single LLM call, and are sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.
🤖 Agents:
Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end to end agents.
🧠 Memory:
Memory is the concept of persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.
For more information on these concepts, please see our full documentation.
💁 Contributing
As an open source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infra, or better documentation.
For detailed information on how to contribute, see here.