langchain/tests/unit_tests/test_math_utils.py
Davis Chase 46542dc774
Contextual compression retriever (#2915)
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-04-20 17:01:14 -07:00

40 lines
1.1 KiB
Python

"""Test math utility functions."""
from typing import List
import numpy as np
from langchain.math_utils import cosine_similarity
def test_cosine_similarity_zero() -> None:
X = np.zeros((3, 3))
Y = np.random.random((3, 3))
expected = np.zeros((3, 3))
actual = cosine_similarity(X, Y)
assert np.allclose(expected, actual)
def test_cosine_similarity_identity() -> None:
X = np.random.random((4, 4))
expected = np.ones(4)
actual = np.diag(cosine_similarity(X, X))
assert np.allclose(expected, actual)
def test_cosine_similarity_empty() -> None:
empty_list: List[List[float]] = []
assert len(cosine_similarity(empty_list, empty_list)) == 0
assert len(cosine_similarity(empty_list, np.random.random((3, 3)))) == 0
def test_cosine_similarity() -> None:
X = [[1.0, 2.0, 3.0], [0.0, 1.0, 0.0], [1.0, 2.0, 0.0]]
Y = [[0.5, 1.0, 1.5], [1.0, 0.0, 0.0], [2.0, 5.0, 2.0]]
expected = [
[1.0, 0.26726124, 0.83743579],
[0.53452248, 0.0, 0.87038828],
[0.5976143, 0.4472136, 0.93419873],
]
actual = cosine_similarity(X, Y)
assert np.allclose(expected, actual)