forked from Archives/langchain
504 lines
12 KiB
Plaintext
504 lines
12 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "984169ca",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Agent VectorDB Question Answering Benchmarking\n",
|
|
"\n",
|
|
"Here we go over how to benchmark performance on a question answering task using an agent to route between multiple vectordatabases.\n",
|
|
"\n",
|
|
"It is highly reccomended that you do any evaluation/benchmarking with tracing enabled. See [here](https://langchain.readthedocs.io/en/latest/tracing.html) for an explanation of what tracing is and how to set it up."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "7b57a50f",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Comment this out if you are NOT using tracing\n",
|
|
"import os\n",
|
|
"os.environ[\"LANGCHAIN_HANDLER\"] = \"langchain\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "8a16b75d",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Loading the data\n",
|
|
"First, let's load the data."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "5b2d5e98",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Found cached dataset json (/Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--agent-vectordb-qa-sota-pg-d3ae24016b514f92/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51)\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "4c389519842e4b65afc33006a531dcbc",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
" 0%| | 0/1 [00:00<?, ?it/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"from langchain.evaluation.loading import load_dataset\n",
|
|
"dataset = load_dataset(\"agent-vectordb-qa-sota-pg\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "61375342",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"{'question': 'What is the purpose of the NATO Alliance?',\n",
|
|
" 'answer': 'The purpose of the NATO Alliance is to secure peace and stability in Europe after World War 2.',\n",
|
|
" 'steps': [{'tool': 'State of Union QA System', 'tool_input': None},\n",
|
|
" {'tool': None, 'tool_input': 'What is the purpose of the NATO Alliance?'}]}"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"dataset[0]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "02500304",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"{'question': 'What is the purpose of YC?',\n",
|
|
" 'answer': 'The purpose of YC is to cause startups to be founded that would not otherwise have existed.',\n",
|
|
" 'steps': [{'tool': 'Paul Graham QA System', 'tool_input': None},\n",
|
|
" {'tool': None, 'tool_input': 'What is the purpose of YC?'}]}"
|
|
]
|
|
},
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"dataset[-1]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "4ab6a716",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Setting up a chain\n",
|
|
"Now we need to create some pipelines for doing question answering. Step one in that is creating indexes over the data in question."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "c18680b5",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.document_loaders import TextLoader\n",
|
|
"loader = TextLoader(\"../../modules/state_of_the_union.txt\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "7f0de2b3",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.indexes import VectorstoreIndexCreator"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "ef84ff99",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Running Chroma using direct local API.\n",
|
|
"Using DuckDB in-memory for database. Data will be transient.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"vectorstore_sota = VectorstoreIndexCreator(vectorstore_kwargs={\"collection_name\":\"sota\"}).from_loaders([loader]).vectorstore"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "f0b5d8f6",
|
|
"metadata": {},
|
|
"source": [
|
|
"Now we can create a question answering chain."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"id": "8843cb0c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.chains import RetrievalQA\n",
|
|
"from langchain.llms import OpenAI"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"id": "573719a0",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"chain_sota = RetrievalQA.from_chain_type(llm=OpenAI(temperature=0), chain_type=\"stuff\", retriever=vectorstore_sota, input_key=\"question\")\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "e48b03d8",
|
|
"metadata": {},
|
|
"source": [
|
|
"Now we do the same for the Paul Graham data."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"id": "c2dbb014",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"loader = TextLoader(\"../../modules/paul_graham_essay.txt\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"id": "98d16f08",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Running Chroma using direct local API.\n",
|
|
"Using DuckDB in-memory for database. Data will be transient.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"vectorstore_pg = VectorstoreIndexCreator(vectorstore_kwargs={\"collection_name\":\"paul_graham\"}).from_loaders([loader]).vectorstore"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"id": "ec0aab02",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"chain_pg = RetrievalQA.from_chain_type(llm=OpenAI(temperature=0), chain_type=\"stuff\", retriever=vectorstore_pg, input_key=\"question\")\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "76b5f8fb",
|
|
"metadata": {},
|
|
"source": [
|
|
"We can now set up an agent to route between them."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"id": "ade1aafa",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.agents import initialize_agent, Tool\n",
|
|
"tools = [\n",
|
|
" Tool(\n",
|
|
" name = \"State of Union QA System\",\n",
|
|
" func=chain_sota.run,\n",
|
|
" description=\"useful for when you need to answer questions about the most recent state of the union address. Input should be a fully formed question.\"\n",
|
|
" ),\n",
|
|
" Tool(\n",
|
|
" name = \"Paul Graham System\",\n",
|
|
" func=chain_pg.run,\n",
|
|
" description=\"useful for when you need to answer questions about Paul Graham. Input should be a fully formed question.\"\n",
|
|
" ),\n",
|
|
"]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"id": "104853f8",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"agent = initialize_agent(tools, OpenAI(temperature=0), agent=\"zero-shot-react-description\", max_iterations=3)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "7f036641",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Make a prediction\n",
|
|
"\n",
|
|
"First, we can make predictions one datapoint at a time. Doing it at this level of granularity allows use to explore the outputs in detail, and also is a lot cheaper than running over multiple datapoints"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 15,
|
|
"id": "4664e79f",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'The purpose of the NATO Alliance is to promote peace and security in the North Atlantic region by providing a collective defense against potential threats.'"
|
|
]
|
|
},
|
|
"execution_count": 15,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"agent.run(dataset[0]['question'])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "d0c16cd7",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Make many predictions\n",
|
|
"Now we can make predictions"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "799f6c17",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"predictions = []\n",
|
|
"predicted_dataset = []\n",
|
|
"error_dataset = []\n",
|
|
"for data in dataset:\n",
|
|
" new_data = {\"input\": data[\"question\"], \"answer\": data[\"answer\"]}\n",
|
|
" try:\n",
|
|
" predictions.append(agent(new_data))\n",
|
|
" predicted_dataset.append(new_data)\n",
|
|
" except Exception:\n",
|
|
" error_dataset.append(new_data)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "49d969fb",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Evaluate performance\n",
|
|
"Now we can evaluate the predictions. The first thing we can do is look at them by eye."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "1d583f03",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"predictions[0]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "4783344b",
|
|
"metadata": {},
|
|
"source": [
|
|
"Next, we can use a language model to score them programatically"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "d0a9341d",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.evaluation.qa import QAEvalChain"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 40,
|
|
"id": "1612dec1",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"llm = OpenAI(temperature=0)\n",
|
|
"eval_chain = QAEvalChain.from_llm(llm)\n",
|
|
"graded_outputs = eval_chain.evaluate(predicted_dataset, predictions, question_key=\"input\", prediction_key=\"output\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "79587806",
|
|
"metadata": {},
|
|
"source": [
|
|
"We can add in the graded output to the `predictions` dict and then get a count of the grades."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 41,
|
|
"id": "2a689df5",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"for i, prediction in enumerate(predictions):\n",
|
|
" prediction['grade'] = graded_outputs[i]['text']"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 42,
|
|
"id": "27b61215",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"Counter({' CORRECT': 19, ' INCORRECT': 14})"
|
|
]
|
|
},
|
|
"execution_count": 42,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"from collections import Counter\n",
|
|
"Counter([pred['grade'] for pred in predictions])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "12fe30f4",
|
|
"metadata": {},
|
|
"source": [
|
|
"We can also filter the datapoints to the incorrect examples and look at them."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 43,
|
|
"id": "47c692a1",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"incorrect = [pred for pred in predictions if pred['grade'] == \" INCORRECT\"]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 46,
|
|
"id": "0ef976c1",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"{'input': 'What is the purpose of the Bipartisan Innovation Act mentioned in the text?',\n",
|
|
" 'answer': 'The Bipartisan Innovation Act will make record investments in emerging technologies and American manufacturing to level the playing field with China and other competitors.',\n",
|
|
" 'output': 'The purpose of the Bipartisan Innovation Act is to promote innovation and entrepreneurship in the United States by providing tax incentives and other support for startups and small businesses.',\n",
|
|
" 'grade': ' INCORRECT'}"
|
|
]
|
|
},
|
|
"execution_count": 46,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"incorrect[0]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "7710401a",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.1"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|