langchain/docs/modules/utils/examples/dalle_image_generator.ipynb
Ashutosh Sanzgiri 62ef63a3be
Add a utility to generate image from a prompt (OpenAI DALL-E) (#784)
This is a utility that allows you to generate an image from a prompt. It
uses the OpenAI DALL-E image generator, which can take the same API key
as the LLM. The output is a link to the generated image, which can be
downloaded to a file or rendered depending on the use case. By default a
single image of resolution 1024x1024 is generated.
2023-02-02 08:48:03 -08:00

182 lines
6.9 KiB
Plaintext

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Dall-E Image Generator\n",
"\n",
"This notebook shows how you can generate images from a prompt synthesized using an OpenAI LLM. The images are generated using Dall-E, which uses the same OpenAI API key as the LLM."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Needed if you would like to display images in the notebook\n",
"!pip install opencv-python scikit-image"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "q-k8wmp0zquh"
},
"outputs": [],
"source": [
"from langchain.llms import OpenAI\n",
"import os\n",
"os.environ[\"OPENAI_API_KEY\"] = \"<your-key-here>\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Run as a chain"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"from langchain.utilities.dalle_image_generator import DallEAPIWrapper\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.chains import LLMChain\n",
"\n",
"llm = OpenAI(temperature=0.9)\n",
"prompt = PromptTemplate(\n",
" input_variables=[\"image_desc\"],\n",
" template=\"Generate a detailed prompt to generate an image based on the following description: {image_desc}\",\n",
")\n",
"chain = LLMChain(llm=llm, prompt=prompt)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"https://oaidalleapiprodscus.blob.core.windows.net/private/org-rocrupyvzgcl4yf25rqq6d1v/user-WsxrbKyP2c8rfhCKWDyMfe8N/img-mg1OWiziXxQN1aR2XRsLNndg.png?st=2023-01-31T07%3A34%3A15Z&se=2023-01-31T09%3A34%3A15Z&sp=r&sv=2021-08-06&sr=b&rscd=inline&rsct=image/png&skoid=6aaadede-4fb3-4698-a8f6-684d7786b067&sktid=a48cca56-e6da-484e-a814-9c849652bcb3&skt=2023-01-30T22%3A19%3A44Z&ske=2023-01-31T22%3A19%3A44Z&sks=b&skv=2021-08-06&sig=XDPee5aEng%2BcbXq2mqhh39uHGZTBmJgGAerSd0g%2BMEs%3D\n"
]
}
],
"source": [
"image_url = DallEAPIWrapper().run(chain.run(\"halloween night at a haunted museum\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# You can click on the link above to display the image for\n",
"# Or you can try the options below to display the image inline in this notebook\n",
"\n",
"try:\n",
" import google.colab\n",
" IN_COLAB = True\n",
"except:\n",
" IN_COLAB = False\n",
"\n",
"if IN_COLAB:\n",
" from google.colab.patches import cv2_imshow # for image display\n",
" from skimage import io\n",
"\n",
" image = io.imread(image_url) \n",
" cv2_imshow(image)\n",
"else:\n",
" import cv2\n",
" from skimage import io\n",
"\n",
" image = io.imread(image_url) \n",
" cv2.imshow('image', image)\n",
" cv2.waitKey(0) #wait for a keyboard input\n",
" cv2.destroyAllWindows()\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Run as a tool with an agent"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m What is the best way to turn this description into an image?\n",
"Action: Dall-E Image Generator\n",
"Action Input: A spooky Halloween night at a haunted museum\u001b[0mhttps://oaidalleapiprodscus.blob.core.windows.net/private/org-rocrupyvzgcl4yf25rqq6d1v/user-WsxrbKyP2c8rfhCKWDyMfe8N/img-ogKfqxxOS5KWVSj4gYySR6FY.png?st=2023-01-31T07%3A38%3A25Z&se=2023-01-31T09%3A38%3A25Z&sp=r&sv=2021-08-06&sr=b&rscd=inline&rsct=image/png&skoid=6aaadede-4fb3-4698-a8f6-684d7786b067&sktid=a48cca56-e6da-484e-a814-9c849652bcb3&skt=2023-01-30T22%3A19%3A36Z&ske=2023-01-31T22%3A19%3A36Z&sks=b&skv=2021-08-06&sig=XsomxxBfu2CP78SzR9lrWUlbask4wBNnaMsHamy4VvU%3D\n",
"\n",
"Observation: \u001b[36;1m\u001b[1;3mhttps://oaidalleapiprodscus.blob.core.windows.net/private/org-rocrupyvzgcl4yf25rqq6d1v/user-WsxrbKyP2c8rfhCKWDyMfe8N/img-ogKfqxxOS5KWVSj4gYySR6FY.png?st=2023-01-31T07%3A38%3A25Z&se=2023-01-31T09%3A38%3A25Z&sp=r&sv=2021-08-06&sr=b&rscd=inline&rsct=image/png&skoid=6aaadede-4fb3-4698-a8f6-684d7786b067&sktid=a48cca56-e6da-484e-a814-9c849652bcb3&skt=2023-01-30T22%3A19%3A36Z&ske=2023-01-31T22%3A19%3A36Z&sks=b&skv=2021-08-06&sig=XsomxxBfu2CP78SzR9lrWUlbask4wBNnaMsHamy4VvU%3D\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m With the image generated, I can now make my final answer.\n",
"Final Answer: An image of a Halloween night at a haunted museum can be seen here: https://oaidalleapiprodscus.blob.core.windows.net/private/org-rocrupyvzgcl4yf25rqq6d1v/user-WsxrbKyP2c8rfhCKWDyMfe8N/img-ogKfqxxOS5KWVSj4gYySR6FY.png?st=2023-01-31T07%3A38%3A25Z&se=2023-01-31T09%3A38%3A25Z&sp=r&sv=2021-08-06&sr=b&rscd=inline&rsct=image/png&skoid=6aaadede-4fb3-4698-a8f6-684d7786b067&sktid=a48cca56-e6da-484e-a814-9c849652bcb3&skt=2023-01-30T22\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
}
],
"source": [
"from langchain.agents import load_tools\n",
"from langchain.agents import initialize_agent\n",
"\n",
"tools = load_tools(['dalle-image-generator'])\n",
"agent = initialize_agent(tools, llm, agent=\"zero-shot-react-description\", verbose=True)\n",
"output = agent.run(\"Create an image of a halloween night at a haunted museum\")"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "langchain",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
},
"vscode": {
"interpreter": {
"hash": "3570c8892273ffbeee7ead61dc7c022b73551d9f55fb2584ac0e8e8920b18a89"
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}