forked from Archives/langchain
20959d8c36
can have multiple input keys, if some come from memory
136 lines
3.6 KiB
Python
136 lines
3.6 KiB
Python
"""Test logic on base chain class."""
|
|
from typing import Any, Dict, List
|
|
|
|
import pytest
|
|
from pydantic import BaseModel
|
|
|
|
from langchain.chains.base import Chain, Memory
|
|
|
|
|
|
class FakeMemory(Memory, BaseModel):
|
|
"""Fake memory class for testing purposes."""
|
|
|
|
@property
|
|
def memory_variables(self) -> List[str]:
|
|
"""Return baz variable."""
|
|
return ["baz"]
|
|
|
|
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]:
|
|
"""Return baz variable."""
|
|
return {"baz": "foo"}
|
|
|
|
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
|
|
"""Pass."""
|
|
pass
|
|
|
|
def clear(self) -> None:
|
|
"""Pass."""
|
|
pass
|
|
|
|
|
|
class FakeChain(Chain, BaseModel):
|
|
"""Fake chain class for testing purposes."""
|
|
|
|
be_correct: bool = True
|
|
the_input_keys: List[str] = ["foo"]
|
|
the_output_keys: List[str] = ["bar"]
|
|
|
|
@property
|
|
def input_keys(self) -> List[str]:
|
|
"""Input keys."""
|
|
return self.the_input_keys
|
|
|
|
@property
|
|
def output_keys(self) -> List[str]:
|
|
"""Output key of bar."""
|
|
return self.the_output_keys
|
|
|
|
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
|
|
if self.be_correct:
|
|
return {"bar": "baz"}
|
|
else:
|
|
return {"baz": "bar"}
|
|
|
|
|
|
def test_bad_inputs() -> None:
|
|
"""Test errors are raised if input keys are not found."""
|
|
chain = FakeChain()
|
|
with pytest.raises(ValueError):
|
|
chain({"foobar": "baz"})
|
|
|
|
|
|
def test_bad_outputs() -> None:
|
|
"""Test errors are raised if outputs keys are not found."""
|
|
chain = FakeChain(be_correct=False)
|
|
with pytest.raises(ValueError):
|
|
chain({"foo": "baz"})
|
|
|
|
|
|
def test_correct_call() -> None:
|
|
"""Test correct call of fake chain."""
|
|
chain = FakeChain()
|
|
output = chain({"foo": "bar"})
|
|
assert output == {"foo": "bar", "bar": "baz"}
|
|
|
|
|
|
def test_single_input_correct() -> None:
|
|
"""Test passing single input works."""
|
|
chain = FakeChain()
|
|
output = chain("bar")
|
|
assert output == {"foo": "bar", "bar": "baz"}
|
|
|
|
|
|
def test_single_input_error() -> None:
|
|
"""Test passing single input errors as expected."""
|
|
chain = FakeChain(the_input_keys=["foo", "bar"])
|
|
with pytest.raises(ValueError):
|
|
chain("bar")
|
|
|
|
|
|
def test_run_single_arg() -> None:
|
|
"""Test run method with single arg."""
|
|
chain = FakeChain()
|
|
output = chain.run("bar")
|
|
assert output == "baz"
|
|
|
|
|
|
def test_run_multiple_args_error() -> None:
|
|
"""Test run method with multiple args errors as expected."""
|
|
chain = FakeChain()
|
|
with pytest.raises(ValueError):
|
|
chain.run("bar", "foo")
|
|
|
|
|
|
def test_run_kwargs() -> None:
|
|
"""Test run method with kwargs."""
|
|
chain = FakeChain(the_input_keys=["foo", "bar"])
|
|
output = chain.run(foo="bar", bar="foo")
|
|
assert output == "baz"
|
|
|
|
|
|
def test_run_kwargs_error() -> None:
|
|
"""Test run method with kwargs errors as expected."""
|
|
chain = FakeChain(the_input_keys=["foo", "bar"])
|
|
with pytest.raises(ValueError):
|
|
chain.run(foo="bar", baz="foo")
|
|
|
|
|
|
def test_run_args_and_kwargs_error() -> None:
|
|
"""Test run method with args and kwargs."""
|
|
chain = FakeChain(the_input_keys=["foo", "bar"])
|
|
with pytest.raises(ValueError):
|
|
chain.run("bar", foo="bar")
|
|
|
|
|
|
def test_multiple_output_keys_error() -> None:
|
|
"""Test run with multiple output keys errors as expected."""
|
|
chain = FakeChain(the_output_keys=["foo", "bar"])
|
|
with pytest.raises(ValueError):
|
|
chain.run("bar")
|
|
|
|
|
|
def test_run_arg_with_memory() -> None:
|
|
"""Test run method works when arg is passed."""
|
|
chain = FakeChain(the_input_keys=["foo", "baz"], memory=FakeMemory())
|
|
chain.run("bar")
|