forked from Archives/langchain
18af149e91
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
104 lines
3.0 KiB
Python
104 lines
3.0 KiB
Python
"""Test for Serializable base class"""
|
|
|
|
from typing import Any, Dict
|
|
|
|
import pytest
|
|
|
|
from langchain.callbacks.tracers.langchain import LangChainTracer
|
|
from langchain.chains.llm import LLMChain
|
|
from langchain.chat_models.openai import ChatOpenAI
|
|
from langchain.llms.openai import OpenAI
|
|
from langchain.load.dump import dumps
|
|
from langchain.load.serializable import Serializable
|
|
from langchain.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate
|
|
from langchain.prompts.prompt import PromptTemplate
|
|
|
|
|
|
class Person(Serializable):
|
|
secret: str
|
|
|
|
you_can_see_me: str = "hello"
|
|
|
|
@property
|
|
def lc_serializable(self) -> bool:
|
|
return True
|
|
|
|
@property
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
return {"secret": "SECRET"}
|
|
|
|
@property
|
|
def lc_attributes(self) -> Dict[str, str]:
|
|
return {"you_can_see_me": self.you_can_see_me}
|
|
|
|
|
|
class SpecialPerson(Person):
|
|
another_secret: str
|
|
|
|
another_visible: str = "bye"
|
|
|
|
# Gets merged with parent class's secrets
|
|
@property
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
return {"another_secret": "ANOTHER_SECRET"}
|
|
|
|
# Gets merged with parent class's attributes
|
|
@property
|
|
def lc_attributes(self) -> Dict[str, str]:
|
|
return {"another_visible": self.another_visible}
|
|
|
|
|
|
class NotSerializable:
|
|
pass
|
|
|
|
|
|
def test_person(snapshot: Any) -> None:
|
|
p = Person(secret="hello")
|
|
assert dumps(p, pretty=True) == snapshot
|
|
sp = SpecialPerson(another_secret="Wooo", secret="Hmm")
|
|
assert dumps(sp, pretty=True) == snapshot
|
|
|
|
|
|
@pytest.mark.requires("openai")
|
|
def test_serialize_openai_llm(snapshot: Any) -> None:
|
|
llm = OpenAI(
|
|
model="davinci",
|
|
temperature=0.5,
|
|
openai_api_key="hello",
|
|
# This is excluded from serialization
|
|
callbacks=[LangChainTracer()],
|
|
)
|
|
llm.temperature = 0.7 # this is reflected in serialization
|
|
assert dumps(llm, pretty=True) == snapshot
|
|
|
|
|
|
@pytest.mark.requires("openai")
|
|
def test_serialize_llmchain(snapshot: Any) -> None:
|
|
llm = OpenAI(model="davinci", temperature=0.5, openai_api_key="hello")
|
|
prompt = PromptTemplate.from_template("hello {name}!")
|
|
chain = LLMChain(llm=llm, prompt=prompt)
|
|
assert dumps(chain, pretty=True) == snapshot
|
|
|
|
|
|
@pytest.mark.requires("openai")
|
|
def test_serialize_llmchain_chat(snapshot: Any) -> None:
|
|
llm = ChatOpenAI(model="davinci", temperature=0.5, openai_api_key="hello")
|
|
prompt = ChatPromptTemplate.from_messages(
|
|
[HumanMessagePromptTemplate.from_template("hello {name}!")]
|
|
)
|
|
chain = LLMChain(llm=llm, prompt=prompt)
|
|
assert dumps(chain, pretty=True) == snapshot
|
|
|
|
|
|
@pytest.mark.requires("openai")
|
|
def test_serialize_llmchain_with_non_serializable_arg(snapshot: Any) -> None:
|
|
llm = OpenAI(
|
|
model="davinci",
|
|
temperature=0.5,
|
|
openai_api_key="hello",
|
|
client=NotSerializable,
|
|
)
|
|
prompt = PromptTemplate.from_template("hello {name}!")
|
|
chain = LLMChain(llm=llm, prompt=prompt)
|
|
assert dumps(chain, pretty=True) == snapshot
|