langchain/tests/unit_tests/vectorstores/test_sklearn.py
Janos Tolgyesi 1111f18eb4
Add maximal relevance search to SKLearnVectorStore (#5430)
# Add maximal relevance search to SKLearnVectorStore

This PR implements the maximum relevance search in SKLearnVectorStore. 

Twitter handle: jtolgyesi (I submitted also the original implementation
of SKLearnVectorStore)

## Before submitting

Unit tests are included.

Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
2023-05-30 16:13:33 -07:00

101 lines
3.3 KiB
Python

"""Test SKLearnVectorStore functionality."""
from pathlib import Path
import pytest
from langchain.vectorstores import SKLearnVectorStore
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
@pytest.mark.requires("numpy", "sklearn")
def test_sklearn() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch = SKLearnVectorStore.from_texts(texts, FakeEmbeddings())
output = docsearch.similarity_search("foo", k=1)
assert len(output) == 1
assert output[0].page_content == "foo"
@pytest.mark.requires("numpy", "sklearn")
def test_sklearn_with_metadatas() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": str(i)} for i in range(len(texts))]
docsearch = SKLearnVectorStore.from_texts(
texts,
FakeEmbeddings(),
metadatas=metadatas,
)
output = docsearch.similarity_search("foo", k=1)
assert output[0].metadata["page"] == "0"
@pytest.mark.requires("numpy", "sklearn")
def test_sklearn_with_metadatas_with_scores() -> None:
"""Test end to end construction and scored search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": str(i)} for i in range(len(texts))]
docsearch = SKLearnVectorStore.from_texts(
texts,
FakeEmbeddings(),
metadatas=metadatas,
)
output = docsearch.similarity_search_with_relevance_scores("foo", k=1)
assert len(output) == 1
doc, score = output[0]
assert doc.page_content == "foo"
assert doc.metadata["page"] == "0"
assert score == 1
@pytest.mark.requires("numpy", "sklearn")
def test_sklearn_with_persistence(tmpdir: Path) -> None:
"""Test end to end construction and search, with persistence."""
persist_path = tmpdir / "foo.parquet"
texts = ["foo", "bar", "baz"]
docsearch = SKLearnVectorStore.from_texts(
texts,
FakeEmbeddings(),
persist_path=str(persist_path),
serializer="json",
)
output = docsearch.similarity_search("foo", k=1)
assert len(output) == 1
assert output[0].page_content == "foo"
docsearch.persist()
# Get a new VectorStore from the persisted directory
docsearch = SKLearnVectorStore(
FakeEmbeddings(), persist_path=str(persist_path), serializer="json"
)
output = docsearch.similarity_search("foo", k=1)
assert len(output) == 1
assert output[0].page_content == "foo"
@pytest.mark.requires("numpy", "sklearn")
def test_sklearn_mmr() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch = SKLearnVectorStore.from_texts(texts, FakeEmbeddings())
output = docsearch.max_marginal_relevance_search("foo", k=1, fetch_k=3)
assert len(output) == 1
assert output[0].page_content == "foo"
@pytest.mark.requires("numpy", "sklearn")
def test_sklearn_mmr_by_vector() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
embeddings = FakeEmbeddings()
docsearch = SKLearnVectorStore.from_texts(texts, embeddings)
embedded_query = embeddings.embed_query("foo")
output = docsearch.max_marginal_relevance_search_by_vector(
embedded_query, k=1, fetch_k=3
)
assert len(output) == 1
assert output[0].page_content == "foo"