forked from Archives/langchain
0118706fd6
### Description This PR adds a wrapper which adds support for the OpenSearch vector database. Using opensearch-py client we are ingesting the embeddings of given text into opensearch cluster using Bulk API. We can perform the `similarity_search` on the index using the 3 popular searching methods of OpenSearch k-NN plugin: - `Approximate k-NN Search` use approximate nearest neighbor (ANN) algorithms from the [nmslib](https://github.com/nmslib/nmslib), [faiss](https://github.com/facebookresearch/faiss), and [Lucene](https://lucene.apache.org/) libraries to power k-NN search. - `Script Scoring` extends OpenSearch’s script scoring functionality to execute a brute force, exact k-NN search. - `Painless Scripting` adds the distance functions as painless extensions that can be used in more complex combinations. Also, supports brute force, exact k-NN search like Script Scoring. ### Issues Resolved https://github.com/hwchase17/langchain/issues/1054 --------- Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
220 lines
5.6 KiB
Plaintext
220 lines
5.6 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "683953b3",
|
|
"metadata": {},
|
|
"source": [
|
|
"# OpenSearch\n",
|
|
"\n",
|
|
"This notebook shows how to use functionality related to the OpenSearch database.\n",
|
|
"\n",
|
|
"To run, you should have the opensearch instance up and running: [here](https://opensearch.org/docs/latest/install-and-configure/install-opensearch/index/)\n",
|
|
"`similarity_search` by default performs the Approximate k-NN Search which uses one of the several algorithms like lucene, nmslib, faiss recommended for\n",
|
|
"large datasets. To perform brute force search we have other search methods known as Script Scoring and Painless Scripting.\n",
|
|
"Check [this](https://opensearch.org/docs/latest/search-plugins/knn/index/) for more details."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "aac9563e",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
|
|
"from langchain.text_splitter import CharacterTextSplitter\n",
|
|
"from langchain.vectorstores import OpenSearchVectorSearch\n",
|
|
"from langchain.document_loaders import TextLoader"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "a3c3999a",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.document_loaders import TextLoader\n",
|
|
"loader = TextLoader('../../state_of_the_union.txt')\n",
|
|
"documents = loader.load()\n",
|
|
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
|
|
"docs = text_splitter.split_documents(documents)\n",
|
|
"\n",
|
|
"embeddings = OpenAIEmbeddings()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"outputs": [],
|
|
"source": [
|
|
"docsearch = OpenSearchVectorSearch.from_texts(texts, embeddings, opensearch_url=\"http://localhost:9200\")\n",
|
|
"\n",
|
|
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
|
"docs = docsearch.similarity_search(query)"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"outputs": [],
|
|
"source": [
|
|
"print(docs[0].page_content)"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"#### similarity_search using Approximate k-NN Search with Custom Parameters"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"outputs": [],
|
|
"source": [
|
|
"docsearch = OpenSearchVectorSearch.from_texts(texts, embeddings, opensearch_url=\"http://localhost:9200\", engine=\"faiss\", space_type=\"innerproduct\", ef_construction=256, m=48)\n",
|
|
"\n",
|
|
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
|
"docs = docsearch.similarity_search(query)"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"outputs": [],
|
|
"source": [
|
|
"print(docs[0].page_content)"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"#### similarity_search using Script Scoring with Custom Parameters"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"outputs": [],
|
|
"source": [
|
|
"docsearch = OpenSearchVectorSearch.from_texts(texts, embeddings, opensearch_url=\"http://localhost:9200\", is_appx_search=False)\n",
|
|
"\n",
|
|
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
|
"docs = docsearch.similarity_search(\"What did the president say about Ketanji Brown Jackson\", k=1, search_type=\"script_scoring\")"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"outputs": [],
|
|
"source": [
|
|
"print(docs[0].page_content)"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"#### similarity_search using Painless Scripting with Custom Parameters"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"outputs": [],
|
|
"source": [
|
|
"docsearch = OpenSearchVectorSearch.from_texts(texts, embeddings, opensearch_url=\"http://localhost:9200\", is_appx_search=False)\n",
|
|
"filter = {\"bool\": {\"filter\": {\"term\": {\"text\": \"smuggling\"}}}}\n",
|
|
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
|
"docs = docsearch.similarity_search(\"What did the president say about Ketanji Brown Jackson\", search_type=\"painless_scripting\", space_type=\"cosineSimilarity\", pre_filter=filter)"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"outputs": [],
|
|
"source": [
|
|
"print(docs[0].page_content)"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.1"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
} |