langchain/docs/modules/chains/getting_started.ipynb
Leonid Ganeline 1f11f80641
docs: cleaning (#5413)
# docs cleaning

Changed docs to consistent format (probably, we need an official doc
integration template):
- ClearML - added product descriptions; changed title/headers
- Rebuff  - added product descriptions; changed title/headers
- WhyLabs  - added product descriptions; changed title/headers
- Docugami - changed title/headers/structure
- Airbyte - fixed title
- Wolfram Alpha - added descriptions, fixed title
- OpenWeatherMap -  - added product descriptions; changed title/headers
- Unstructured - changed description

## Who can review?

Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:

@hwchase17
@dev2049
2023-05-30 13:58:16 -07:00

602 lines
17 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Getting Started\n",
"\n",
"In this tutorial, we will learn about creating simple chains in LangChain. We will learn how to create a chain, add components to it, and run it.\n",
"\n",
"In this tutorial, we will cover:\n",
"- Using a simple LLM chain\n",
"- Creating sequential chains\n",
"- Creating a custom chain\n",
"\n",
"## Why do we need chains?\n",
"\n",
"Chains allow us to combine multiple components together to create a single, coherent application. For example, we can create a chain that takes user input, formats it with a PromptTemplate, and then passes the formatted response to an LLM. We can build more complex chains by combining multiple chains together, or by combining chains with other components.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Quick start: Using `LLMChain`\n",
"\n",
"The `LLMChain` is a simple chain that takes in a prompt template, formats it with the user input and returns the response from an LLM.\n",
"\n",
"\n",
"To use the `LLMChain`, first create a prompt template."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"from langchain.llms import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0.9)\n",
"prompt = PromptTemplate(\n",
" input_variables=[\"product\"],\n",
" template=\"What is a good name for a company that makes {product}?\",\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can now create a very simple chain that will take user input, format the prompt with it, and then send it to the LLM."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"Colorful Toes Co.\n"
]
}
],
"source": [
"from langchain.chains import LLMChain\n",
"chain = LLMChain(llm=llm, prompt=prompt)\n",
"\n",
"# Run the chain only specifying the input variable.\n",
"print(chain.run(\"colorful socks\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If there are multiple variables, you can input them all at once using a dictionary."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"Socktopia Colourful Creations.\n"
]
}
],
"source": [
"prompt = PromptTemplate(\n",
" input_variables=[\"company\", \"product\"],\n",
" template=\"What is a good name for {company} that makes {product}?\",\n",
")\n",
"chain = LLMChain(llm=llm, prompt=prompt)\n",
"print(chain.run({\n",
" 'company': \"ABC Startup\",\n",
" 'product': \"colorful socks\"\n",
" }))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can use a chat model in an `LLMChain` as well:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Rainbow Socks Co.\n"
]
}
],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts.chat import (\n",
" ChatPromptTemplate,\n",
" HumanMessagePromptTemplate,\n",
")\n",
"human_message_prompt = HumanMessagePromptTemplate(\n",
" prompt=PromptTemplate(\n",
" template=\"What is a good name for a company that makes {product}?\",\n",
" input_variables=[\"product\"],\n",
" )\n",
" )\n",
"chat_prompt_template = ChatPromptTemplate.from_messages([human_message_prompt])\n",
"chat = ChatOpenAI(temperature=0.9)\n",
"chain = LLMChain(llm=chat, prompt=chat_prompt_template)\n",
"print(chain.run(\"colorful socks\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Different ways of calling chains\n",
"\n",
"All classes inherited from `Chain` offer a few ways of running chain logic. The most direct one is by using `__call__`:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'adjective': 'corny',\n",
" 'text': 'Why did the tomato turn red? Because it saw the salad dressing!'}"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat = ChatOpenAI(temperature=0)\n",
"prompt_template = \"Tell me a {adjective} joke\"\n",
"llm_chain = LLMChain(\n",
" llm=chat,\n",
" prompt=PromptTemplate.from_template(prompt_template)\n",
")\n",
"\n",
"llm_chain(inputs={\"adjective\":\"corny\"})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"By default, `__call__` returns both the input and output key values. You can configure it to only return output key values by setting `return_only_outputs` to `True`."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'text': 'Why did the tomato turn red? Because it saw the salad dressing!'}"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_chain(\"corny\", return_only_outputs=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If the `Chain` only outputs one output key (i.e. only has one element in its `output_keys`), you can use `run` method. Note that `run` outputs a string instead of a dictionary."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['text']"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# llm_chain only has one output key, so we can use run\n",
"llm_chain.output_keys"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Why did the tomato turn red? Because it saw the salad dressing!'"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_chain.run({\"adjective\":\"corny\"})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the case of one input key, you can input the string directly without specifying the input mapping."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'adjective': 'corny',\n",
" 'text': 'Why did the tomato turn red? Because it saw the salad dressing!'}"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# These two are equivalent\n",
"llm_chain.run({\"adjective\":\"corny\"})\n",
"llm_chain.run(\"corny\")\n",
"\n",
"# These two are also equivalent\n",
"llm_chain(\"corny\")\n",
"llm_chain({\"adjective\":\"corny\"})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Tips: You can easily integrate a `Chain` object as a `Tool` in your `Agent` via its `run` method. See an example [here](../agents/tools/custom_tools.ipynb)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Add memory to chains\n",
"\n",
"`Chain` supports taking a `BaseMemory` object as its `memory` argument, allowing `Chain` object to persist data across multiple calls. In other words, it makes `Chain` a stateful object."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'The next four colors of a rainbow are green, blue, indigo, and violet.'"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.chains import ConversationChain\n",
"from langchain.memory import ConversationBufferMemory\n",
"\n",
"conversation = ConversationChain(\n",
" llm=chat,\n",
" memory=ConversationBufferMemory()\n",
")\n",
"\n",
"conversation.run(\"Answer briefly. What are the first 3 colors of a rainbow?\")\n",
"# -> The first three colors of a rainbow are red, orange, and yellow.\n",
"conversation.run(\"And the next 4?\")\n",
"# -> The next four colors of a rainbow are green, blue, indigo, and violet."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Essentially, `BaseMemory` defines an interface of how `langchain` stores memory. It allows reading of stored data through `load_memory_variables` method and storing new data through `save_context` method. You can learn more about it in [Memory](../memory/getting_started.ipynb) section."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Debug Chain\n",
"\n",
"It can be hard to debug `Chain` object solely from its output as most `Chain` objects involve a fair amount of input prompt preprocessing and LLM output post-processing. Setting `verbose` to `True` will print out some internal states of the `Chain` object while it is being ran."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new ConversationChain chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mThe following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.\n",
"\n",
"Current conversation:\n",
"\n",
"Human: What is ChatGPT?\n",
"AI:\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'ChatGPT is an AI language model developed by OpenAI. It is based on the GPT-3 architecture and is capable of generating human-like responses to text prompts. ChatGPT has been trained on a massive amount of text data and can understand and respond to a wide range of topics. It is often used for chatbots, virtual assistants, and other conversational AI applications.'"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conversation = ConversationChain(\n",
" llm=chat,\n",
" memory=ConversationBufferMemory(),\n",
" verbose=True\n",
")\n",
"conversation.run(\"What is ChatGPT?\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Combine chains with the `SequentialChain`\n",
"\n",
"The next step after calling a language model is to make a series of calls to a language model. We can do this using sequential chains, which are chains that execute their links in a predefined order. Specifically, we will use the `SimpleSequentialChain`. This is the simplest type of a sequential chain, where each step has a single input/output, and the output of one step is the input to the next.\n",
"\n",
"In this tutorial, our sequential chain will:\n",
"1. First, create a company name for a product. We will reuse the `LLMChain` we'd previously initialized to create this company name.\n",
"2. Then, create a catchphrase for the product. We will initialize a new `LLMChain` to create this catchphrase, as shown below."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"second_prompt = PromptTemplate(\n",
" input_variables=[\"company_name\"],\n",
" template=\"Write a catchphrase for the following company: {company_name}\",\n",
")\n",
"chain_two = LLMChain(llm=llm, prompt=second_prompt)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can combine the two LLMChains, so that we can create a company name and a catchphrase in a single step."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new SimpleSequentialChain chain...\u001b[0m\n",
"\u001b[36;1m\u001b[1;3mRainbow Socks Co.\u001b[0m\n",
"\u001b[33;1m\u001b[1;3m\n",
"\n",
"\"Put a little rainbow in your step!\"\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"\n",
"\"Put a little rainbow in your step!\"\n"
]
}
],
"source": [
"from langchain.chains import SimpleSequentialChain\n",
"overall_chain = SimpleSequentialChain(chains=[chain, chain_two], verbose=True)\n",
"\n",
"# Run the chain specifying only the input variable for the first chain.\n",
"catchphrase = overall_chain.run(\"colorful socks\")\n",
"print(catchphrase)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a custom chain with the `Chain` class\n",
"\n",
"LangChain provides many chains out of the box, but sometimes you may want to create a custom chain for your specific use case. For this example, we will create a custom chain that concatenates the outputs of 2 `LLMChain`s.\n",
"\n",
"In order to create a custom chain:\n",
"1. Start by subclassing the `Chain` class,\n",
"2. Fill out the `input_keys` and `output_keys` properties,\n",
"3. Add the `_call` method that shows how to execute the chain.\n",
"\n",
"These steps are demonstrated in the example below:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import LLMChain\n",
"from langchain.chains.base import Chain\n",
"\n",
"from typing import Dict, List\n",
"\n",
"\n",
"class ConcatenateChain(Chain):\n",
" chain_1: LLMChain\n",
" chain_2: LLMChain\n",
"\n",
" @property\n",
" def input_keys(self) -> List[str]:\n",
" # Union of the input keys of the two chains.\n",
" all_input_vars = set(self.chain_1.input_keys).union(set(self.chain_2.input_keys))\n",
" return list(all_input_vars)\n",
"\n",
" @property\n",
" def output_keys(self) -> List[str]:\n",
" return ['concat_output']\n",
"\n",
" def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:\n",
" output_1 = self.chain_1.run(inputs)\n",
" output_2 = self.chain_2.run(inputs)\n",
" return {'concat_output': output_1 + output_2}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, we can try running the chain that we called.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Concatenated output:\n",
"\n",
"\n",
"Funky Footwear Company\n",
"\n",
"\"Brighten Up Your Day with Our Colorful Socks!\"\n"
]
}
],
"source": [
"prompt_1 = PromptTemplate(\n",
" input_variables=[\"product\"],\n",
" template=\"What is a good name for a company that makes {product}?\",\n",
")\n",
"chain_1 = LLMChain(llm=llm, prompt=prompt_1)\n",
"\n",
"prompt_2 = PromptTemplate(\n",
" input_variables=[\"product\"],\n",
" template=\"What is a good slogan for a company that makes {product}?\",\n",
")\n",
"chain_2 = LLMChain(llm=llm, prompt=prompt_2)\n",
"\n",
"concat_chain = ConcatenateChain(chain_1=chain_1, chain_2=chain_2)\n",
"concat_output = concat_chain.run(\"colorful socks\")\n",
"print(f\"Concatenated output:\\n{concat_output}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"That's it! For more details about how to do cool things with Chains, check out the [how-to guide](how_to_guides.rst) for chains."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"vscode": {
"interpreter": {
"hash": "b1677b440931f40d89ef8be7bf03acb108ce003de0ac9b18e8d43753ea2e7103"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}