langchain/docs/modules/indexes/chain_examples
Naveen Tatikonda 0118706fd6
Add Support for OpenSearch Vector database (#1191)
### Description
This PR adds a wrapper which adds support for the OpenSearch vector
database. Using opensearch-py client we are ingesting the embeddings of
given text into opensearch cluster using Bulk API. We can perform the
`similarity_search` on the index using the 3 popular searching methods
of OpenSearch k-NN plugin:

- `Approximate k-NN Search` use approximate nearest neighbor (ANN)
algorithms from the [nmslib](https://github.com/nmslib/nmslib),
[faiss](https://github.com/facebookresearch/faiss), and
[Lucene](https://lucene.apache.org/) libraries to power k-NN search.
- `Script Scoring` extends OpenSearch’s script scoring functionality to
execute a brute force, exact k-NN search.
- `Painless Scripting` adds the distance functions as painless
extensions that can be used in more complex combinations. Also, supports
brute force, exact k-NN search like Script Scoring.

### Issues Resolved 
https://github.com/hwchase17/langchain/issues/1054

---------

Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
2023-02-20 18:39:34 -08:00
..
analyze_document.ipynb improve docs for indexes (#1146) 2023-02-19 23:14:50 -08:00
chat_vector_db.ipynb improve docs for indexes (#1146) 2023-02-19 23:14:50 -08:00
graph_qa.ipynb improve docs for indexes (#1146) 2023-02-19 23:14:50 -08:00
qa_with_sources.ipynb Add Support for OpenSearch Vector database (#1191) 2023-02-20 18:39:34 -08:00
question_answering.ipynb improve docs for indexes (#1146) 2023-02-19 23:14:50 -08:00
summarize.ipynb improve docs for indexes (#1146) 2023-02-19 23:14:50 -08:00
vector_db_qa_with_sources.ipynb Add Support for OpenSearch Vector database (#1191) 2023-02-20 18:39:34 -08:00
vector_db_qa.ipynb improve docs for indexes (#1146) 2023-02-19 23:14:50 -08:00
vector_db_text_generation.ipynb improve docs for indexes (#1146) 2023-02-19 23:14:50 -08:00