"""Test conversation chain and memory.""" import pytest from langchain.chains.base import Memory from langchain.chains.conversation.base import ConversationChain from langchain.chains.conversation.memory import ( ConversationalBufferWindowMemory, ConversationBufferMemory, ConversationSummaryMemory, ) from langchain.prompts.prompt import PromptTemplate from tests.unit_tests.llms.fake_llm import FakeLLM def test_conversation_chain_works() -> None: """Test that conversation chain works in basic setting.""" llm = FakeLLM() prompt = PromptTemplate(input_variables=["foo", "bar"], template="{foo} {bar}") memory = ConversationBufferMemory(memory_key="foo") chain = ConversationChain(llm=llm, prompt=prompt, memory=memory, input_key="bar") chain.run("foo") def test_conversation_chain_errors_bad_prompt() -> None: """Test that conversation chain works in basic setting.""" llm = FakeLLM() prompt = PromptTemplate(input_variables=[], template="nothing here") with pytest.raises(ValueError): ConversationChain(llm=llm, prompt=prompt) def test_conversation_chain_errors_bad_variable() -> None: """Test that conversation chain works in basic setting.""" llm = FakeLLM() prompt = PromptTemplate(input_variables=["foo"], template="{foo}") memory = ConversationBufferMemory(memory_key="foo") with pytest.raises(ValueError): ConversationChain(llm=llm, prompt=prompt, memory=memory, input_key="foo") @pytest.mark.parametrize( "memory", [ ConversationBufferMemory(memory_key="baz"), ConversationSummaryMemory(llm=FakeLLM(), memory_key="baz"), ], ) def test_conversation_memory(memory: Memory) -> None: """Test basic conversation memory functionality.""" # This is a good input because the input is not the same as baz. good_inputs = {"foo": "bar", "baz": "foo"} # This is a good output because these is one variable. good_outputs = {"bar": "foo"} memory.save_context(good_inputs, good_outputs) # This is a bad input because there are two variables that aren't the same as baz. bad_inputs = {"foo": "bar", "foo1": "bar"} with pytest.raises(ValueError): memory.save_context(bad_inputs, good_outputs) # This is a bad input because the only variable is the same as baz. bad_inputs = {"baz": "bar"} with pytest.raises(ValueError): memory.save_context(bad_inputs, good_outputs) # This is a bad output because it is empty. with pytest.raises(ValueError): memory.save_context(good_inputs, {}) # This is a bad output because there are two keys. bad_outputs = {"foo": "bar", "foo1": "bar"} with pytest.raises(ValueError): memory.save_context(good_inputs, bad_outputs) @pytest.mark.parametrize( "memory", [ ConversationBufferMemory(memory_key="baz"), ConversationSummaryMemory(llm=FakeLLM(), memory_key="baz"), ConversationalBufferWindowMemory(memory_key="baz"), ], ) def test_clearing_conversation_memory(memory: Memory) -> None: """Test clearing the conversation memory.""" # This is a good input because the input is not the same as baz. good_inputs = {"foo": "bar", "baz": "foo"} # This is a good output because these is one variable. good_outputs = {"bar": "foo"} memory.save_context(good_inputs, good_outputs) memory.clear() assert memory.load_memory_variables({}) == {"baz": ""}