"""Test OpenSearch functionality.""" import pytest from langchain.docstore.document import Document from langchain.vectorstores.opensearch_vector_search import ( PAINLESS_SCRIPTING_SEARCH, SCRIPT_SCORING_SEARCH, OpenSearchVectorSearch, ) from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings DEFAULT_OPENSEARCH_URL = "http://localhost:9200" texts = ["foo", "bar", "baz"] def test_opensearch() -> None: """Test end to end indexing and search using Approximate Search.""" docsearch = OpenSearchVectorSearch.from_texts( texts, FakeEmbeddings(), opensearch_url=DEFAULT_OPENSEARCH_URL ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo")] def test_opensearch_with_custom_field_name() -> None: """Test indexing and search using custom vector field and text field name.""" docsearch = OpenSearchVectorSearch.from_texts( texts, FakeEmbeddings(), opensearch_url=DEFAULT_OPENSEARCH_URL, vector_field="my_vector", text_field="custom_text", ) output = docsearch.similarity_search( "foo", k=1, vector_field="my_vector", text_field="custom_text" ) assert output == [Document(page_content="foo")] text_input = ["test", "add", "text", "method"] OpenSearchVectorSearch.add_texts( docsearch, text_input, vector_field="my_vector", text_field="custom_text" ) output = docsearch.similarity_search( "add", k=1, vector_field="my_vector", text_field="custom_text" ) assert output == [Document(page_content="foo")] def test_opensearch_with_metadatas() -> None: """Test end to end indexing and search with metadata.""" metadatas = [{"page": i} for i in range(len(texts))] docsearch = OpenSearchVectorSearch.from_texts( texts, FakeEmbeddings(), metadatas=metadatas, opensearch_url=DEFAULT_OPENSEARCH_URL, ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo", metadata={"page": 0})] def test_add_text() -> None: """Test adding additional text elements to existing index.""" text_input = ["test", "add", "text", "method"] metadatas = [{"page": i} for i in range(len(text_input))] docsearch = OpenSearchVectorSearch.from_texts( texts, FakeEmbeddings(), opensearch_url=DEFAULT_OPENSEARCH_URL ) docids = OpenSearchVectorSearch.add_texts(docsearch, text_input, metadatas) assert len(docids) == len(text_input) def test_opensearch_script_scoring() -> None: """Test end to end indexing and search using Script Scoring Search.""" pre_filter_val = {"bool": {"filter": {"term": {"text": "bar"}}}} docsearch = OpenSearchVectorSearch.from_texts( texts, FakeEmbeddings(), opensearch_url=DEFAULT_OPENSEARCH_URL, is_appx_search=False, ) output = docsearch.similarity_search( "foo", k=1, search_type=SCRIPT_SCORING_SEARCH, pre_filter=pre_filter_val ) assert output == [Document(page_content="bar")] def test_add_text_script_scoring() -> None: """Test adding additional text elements and validating using Script Scoring.""" text_input = ["test", "add", "text", "method"] metadatas = [{"page": i} for i in range(len(text_input))] docsearch = OpenSearchVectorSearch.from_texts( text_input, FakeEmbeddings(), opensearch_url=DEFAULT_OPENSEARCH_URL, is_appx_search=False, ) OpenSearchVectorSearch.add_texts(docsearch, texts, metadatas) output = docsearch.similarity_search( "add", k=1, search_type=SCRIPT_SCORING_SEARCH, space_type="innerproduct" ) assert output == [Document(page_content="test")] def test_opensearch_painless_scripting() -> None: """Test end to end indexing and search using Painless Scripting Search.""" pre_filter_val = {"bool": {"filter": {"term": {"text": "baz"}}}} docsearch = OpenSearchVectorSearch.from_texts( texts, FakeEmbeddings(), opensearch_url=DEFAULT_OPENSEARCH_URL, is_appx_search=False, ) output = docsearch.similarity_search( "foo", k=1, search_type=PAINLESS_SCRIPTING_SEARCH, pre_filter=pre_filter_val ) assert output == [Document(page_content="baz")] def test_add_text_painless_scripting() -> None: """Test adding additional text elements and validating using Painless Scripting.""" text_input = ["test", "add", "text", "method"] metadatas = [{"page": i} for i in range(len(text_input))] docsearch = OpenSearchVectorSearch.from_texts( text_input, FakeEmbeddings(), opensearch_url=DEFAULT_OPENSEARCH_URL, is_appx_search=False, ) OpenSearchVectorSearch.add_texts(docsearch, texts, metadatas) output = docsearch.similarity_search( "add", k=1, search_type=PAINLESS_SCRIPTING_SEARCH, space_type="cosineSimilarity" ) assert output == [Document(page_content="test")] def test_opensearch_invalid_search_type() -> None: """Test to validate similarity_search by providing invalid search_type.""" docsearch = OpenSearchVectorSearch.from_texts( texts, FakeEmbeddings(), opensearch_url=DEFAULT_OPENSEARCH_URL ) with pytest.raises(ValueError): docsearch.similarity_search("foo", k=1, search_type="invalid_search_type") def test_opensearch_embedding_size_zero() -> None: """Test to validate indexing when embedding size is zero.""" with pytest.raises(RuntimeError): OpenSearchVectorSearch.from_texts( [], FakeEmbeddings(), opensearch_url=DEFAULT_OPENSEARCH_URL ) def test_appx_search_with_boolean_filter() -> None: """Test Approximate Search with Boolean Filter.""" boolean_filter_val = {"bool": {"must": [{"term": {"text": "bar"}}]}} docsearch = OpenSearchVectorSearch.from_texts( texts, FakeEmbeddings(), opensearch_url=DEFAULT_OPENSEARCH_URL, ) output = docsearch.similarity_search( "foo", k=3, boolean_filter=boolean_filter_val, subquery_clause="should" ) assert output == [Document(page_content="bar")] def test_appx_search_with_lucene_filter() -> None: """Test Approximate Search with Lucene Filter.""" lucene_filter_val = {"bool": {"must": [{"term": {"text": "bar"}}]}} docsearch = OpenSearchVectorSearch.from_texts( texts, FakeEmbeddings(), opensearch_url=DEFAULT_OPENSEARCH_URL, engine="lucene" ) output = docsearch.similarity_search("foo", k=3, lucene_filter=lucene_filter_val) assert output == [Document(page_content="bar")] def test_opensearch_with_custom_field_name_appx_true() -> None: """Test Approximate Search with custom field name appx true.""" text_input = ["test", "add", "text", "method"] docsearch = OpenSearchVectorSearch.from_texts( text_input, FakeEmbeddings(), opensearch_url=DEFAULT_OPENSEARCH_URL, is_appx_search=True, ) output = docsearch.similarity_search("add", k=1) assert output == [Document(page_content="add")] def test_opensearch_with_custom_field_name_appx_false() -> None: """Test Approximate Search with custom field name appx true.""" text_input = ["test", "add", "text", "method"] docsearch = OpenSearchVectorSearch.from_texts( text_input, FakeEmbeddings(), opensearch_url=DEFAULT_OPENSEARCH_URL ) output = docsearch.similarity_search("add", k=1) assert output == [Document(page_content="add")]