"""Test Deep Lake functionality.""" import deeplake import pytest from pytest import FixtureRequest from langchain.docstore.document import Document from langchain.vectorstores import DeepLake from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings @pytest.fixture def deeplake_datastore() -> DeepLake: texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = DeepLake.from_texts( dataset_path="mem://test_path", texts=texts, metadatas=metadatas, embedding=FakeEmbeddings(), ) return docsearch @pytest.fixture(params=["L1", "L2", "max", "cos"]) def distance_metric(request: FixtureRequest) -> str: return request.param def test_deeplake() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] docsearch = DeepLake.from_texts( dataset_path="mem://test_path", texts=texts, embedding=FakeEmbeddings() ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo")] def test_deeplake_with_metadatas() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = DeepLake.from_texts( dataset_path="mem://test_path", texts=texts, embedding=FakeEmbeddings(), metadatas=metadatas, ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo", metadata={"page": "0"})] def test_deeplakewith_persistence() -> None: """Test end to end construction and search, with persistence.""" dataset_path = "./tests/persist_dir" if deeplake.exists(dataset_path): deeplake.delete(dataset_path) texts = ["foo", "bar", "baz"] docsearch = DeepLake.from_texts( dataset_path=dataset_path, texts=texts, embedding=FakeEmbeddings(), ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo")] # Get a new VectorStore from the persisted directory docsearch = DeepLake( dataset_path=dataset_path, embedding_function=FakeEmbeddings(), ) output = docsearch.similarity_search("foo", k=1) # Clean up docsearch.delete_dataset() # Persist doesn't need to be called again # Data will be automatically persisted on object deletion # Or on program exit def test_deeplake_overwrite_flag() -> None: """Test overwrite behavior""" dataset_path = "./tests/persist_dir" if deeplake.exists(dataset_path): deeplake.delete(dataset_path) texts = ["foo", "bar", "baz"] docsearch = DeepLake.from_texts( dataset_path=dataset_path, texts=texts, embedding=FakeEmbeddings(), ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo")] # Get a new VectorStore from the persisted directory, with no overwrite (implicit) docsearch = DeepLake( dataset_path=dataset_path, embedding_function=FakeEmbeddings(), ) output = docsearch.similarity_search("foo", k=1) # assert page still present assert output == [Document(page_content="foo")] # Get a new VectorStore from the persisted directory, with no overwrite (explicit) docsearch = DeepLake( dataset_path=dataset_path, embedding_function=FakeEmbeddings(), overwrite=False, ) output = docsearch.similarity_search("foo", k=1) # assert page still present assert output == [Document(page_content="foo")] # Get a new VectorStore from the persisted directory, with overwrite docsearch = DeepLake( dataset_path=dataset_path, embedding_function=FakeEmbeddings(), overwrite=True, ) with pytest.raises(ValueError): output = docsearch.similarity_search("foo", k=1) def test_similarity_search(deeplake_datastore: DeepLake, distance_metric: str) -> None: """Test similarity search.""" output = deeplake_datastore.similarity_search( "foo", k=1, distance_metric=distance_metric ) assert output == [Document(page_content="foo", metadata={"page": "0"})] deeplake_datastore.delete_dataset() def test_similarity_search_by_vector( deeplake_datastore: DeepLake, distance_metric: str ) -> None: """Test similarity search by vector.""" embeddings = FakeEmbeddings().embed_documents(["foo", "bar", "baz"]) output = deeplake_datastore.similarity_search_by_vector( embeddings[1], k=1, distance_metric=distance_metric ) assert output == [Document(page_content="bar", metadata={"page": "1"})] deeplake_datastore.delete_dataset() def test_similarity_search_with_score( deeplake_datastore: DeepLake, distance_metric: str ) -> None: """Test similarity search with score.""" output, score = deeplake_datastore.similarity_search_with_score( "foo", k=1, distance_metric=distance_metric )[0] assert output == Document(page_content="foo", metadata={"page": "0"}) if distance_metric == "cos": assert score == 1.0 else: assert score == 0.0 deeplake_datastore.delete_dataset() def test_similarity_search_with_filter( deeplake_datastore: DeepLake, distance_metric: str ) -> None: """Test similarity search.""" output = deeplake_datastore.similarity_search( "foo", k=1, distance_metric=distance_metric, filter={"metadata": {"page": "1"}}, ) assert output == [Document(page_content="bar", metadata={"page": "1"})] deeplake_datastore.delete_dataset() def test_max_marginal_relevance_search(deeplake_datastore: DeepLake) -> None: """Test max marginal relevance search by vector.""" output = deeplake_datastore.max_marginal_relevance_search("foo", k=1, fetch_k=2) assert output == [Document(page_content="foo", metadata={"page": "0"})] embeddings = FakeEmbeddings().embed_documents(["foo", "bar", "baz"]) output = deeplake_datastore.max_marginal_relevance_search_by_vector( embeddings[0], k=1, fetch_k=2 ) assert output == [Document(page_content="foo", metadata={"page": "0"})] deeplake_datastore.delete_dataset() def test_delete_dataset_by_ids(deeplake_datastore: DeepLake) -> None: """Test delete dataset.""" id = deeplake_datastore.vectorstore.dataset.id.data()["value"][0] deeplake_datastore.delete(ids=[id]) assert ( deeplake_datastore.similarity_search( "foo", k=1, filter={"metadata": {"page": "0"}} ) == [] ) assert len(deeplake_datastore.vectorstore) == 2 deeplake_datastore.delete_dataset() def test_delete_dataset_by_filter(deeplake_datastore: DeepLake) -> None: """Test delete dataset.""" deeplake_datastore.delete(filter={"metadata": {"page": "1"}}) assert ( deeplake_datastore.similarity_search( "bar", k=1, filter={"metadata": {"page": "1"}} ) == [] ) assert len(deeplake_datastore.vectorstore.dataset) == 2 deeplake_datastore.delete_dataset() def test_delete_by_path(deeplake_datastore: DeepLake) -> None: """Test delete dataset.""" path = deeplake_datastore.dataset_path DeepLake.force_delete_by_path(path) assert not deeplake.exists(path)