{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# LLMCheckerChain\n", "This notebook showcases how to use LLMCheckerChain." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from langchain.chains import LLMCheckerChain\n", "from langchain.llms import OpenAI\n", "\n", "llm = OpenAI(temperature=0.7)\n", "\n", "text = \"What type of mammal lays the biggest eggs?\"\n", "\n", "checker_chain = LLMCheckerChain(llm=llm, verbose=True)\n", "\n", "checker_chain.run(text)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" } }, "nbformat": 4, "nbformat_minor": 4 }