{ "cells": [ { "cell_type": "markdown", "id": "33205b12", "metadata": {}, "source": [ "# Telegram\n", "\n", "This notebook covers how to load data from Telegram into a format that can be ingested into LangChain." ] }, { "cell_type": "code", "execution_count": 1, "id": "90b69c94", "metadata": {}, "outputs": [], "source": [ "from langchain.document_loaders import TelegramChatLoader" ] }, { "cell_type": "code", "execution_count": 2, "id": "13deb0f5", "metadata": {}, "outputs": [], "source": [ "loader = TelegramChatLoader(\"example_data/telegram.json\")" ] }, { "cell_type": "code", "execution_count": 3, "id": "9ccc1e2f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[Document(page_content=\"Henry on 2020-01-01T00:00:02: It's 2020...\\n\\nHenry on 2020-01-01T00:00:04: Fireworks!\\n\\nGrace 🧤 ðŸ\\x8d’ on 2020-01-01T00:00:05: You're a minute late!\\n\\n\", lookup_str='', metadata={'source': 'example_data/telegram.json'}, lookup_index=0)]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "loader.load()" ] }, { "cell_type": "code", "execution_count": null, "id": "3e64cac2", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 5 }