"""Test OpenAI API wrapper.""" from pathlib import Path from typing import Generator import pytest from langchain.callbacks.manager import CallbackManager from langchain.llms.loading import load_llm from langchain.llms.openai import OpenAI, OpenAIChat from langchain.schema import LLMResult from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler def test_openai_call() -> None: """Test valid call to openai.""" llm = OpenAI(max_tokens=10) output = llm("Say foo:") assert isinstance(output, str) def test_openai_extra_kwargs() -> None: """Test extra kwargs to openai.""" # Check that foo is saved in extra_kwargs. llm = OpenAI(foo=3, max_tokens=10) assert llm.max_tokens == 10 assert llm.model_kwargs == {"foo": 3} # Test that if extra_kwargs are provided, they are added to it. llm = OpenAI(foo=3, model_kwargs={"bar": 2}) assert llm.model_kwargs == {"foo": 3, "bar": 2} # Test that if provided twice it errors with pytest.raises(ValueError): OpenAI(foo=3, model_kwargs={"foo": 2}) def test_openai_llm_output_contains_model_name() -> None: """Test llm_output contains model_name.""" llm = OpenAI(max_tokens=10) llm_result = llm.generate(["Hello, how are you?"]) assert llm_result.llm_output is not None assert llm_result.llm_output["model_name"] == llm.model_name def test_openai_stop_valid() -> None: """Test openai stop logic on valid configuration.""" query = "write an ordered list of five items" first_llm = OpenAI(stop="3", temperature=0) first_output = first_llm(query) second_llm = OpenAI(temperature=0) second_output = second_llm(query, stop=["3"]) # Because it stops on new lines, shouldn't return anything assert first_output == second_output def test_openai_stop_error() -> None: """Test openai stop logic on bad configuration.""" llm = OpenAI(stop="3", temperature=0) with pytest.raises(ValueError): llm("write an ordered list of five items", stop=["\n"]) def test_saving_loading_llm(tmp_path: Path) -> None: """Test saving/loading an OpenAI LLM.""" llm = OpenAI(max_tokens=10) llm.save(file_path=tmp_path / "openai.yaml") loaded_llm = load_llm(tmp_path / "openai.yaml") assert loaded_llm == llm def test_openai_streaming() -> None: """Test streaming tokens from OpenAI.""" llm = OpenAI(max_tokens=10) generator = llm.stream("I'm Pickle Rick") assert isinstance(generator, Generator) for token in generator: assert isinstance(token["choices"][0]["text"], str) def test_openai_streaming_error() -> None: """Test error handling in stream.""" llm = OpenAI(best_of=2) with pytest.raises(ValueError): llm.stream("I'm Pickle Rick") def test_openai_streaming_best_of_error() -> None: """Test validation for streaming fails if best_of is not 1.""" with pytest.raises(ValueError): OpenAI(best_of=2, streaming=True) def test_openai_streaming_n_error() -> None: """Test validation for streaming fails if n is not 1.""" with pytest.raises(ValueError): OpenAI(n=2, streaming=True) def test_openai_streaming_multiple_prompts_error() -> None: """Test validation for streaming fails if multiple prompts are given.""" with pytest.raises(ValueError): OpenAI(streaming=True).generate(["I'm Pickle Rick", "I'm Pickle Rick"]) def test_openai_streaming_call() -> None: """Test valid call to openai.""" llm = OpenAI(max_tokens=10, streaming=True) output = llm("Say foo:") assert isinstance(output, str) def test_openai_streaming_callback() -> None: """Test that streaming correctly invokes on_llm_new_token callback.""" callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) llm = OpenAI( max_tokens=10, streaming=True, temperature=0, callback_manager=callback_manager, verbose=True, ) llm("Write me a sentence with 100 words.") assert callback_handler.llm_streams == 10 @pytest.mark.asyncio async def test_openai_async_generate() -> None: """Test async generation.""" llm = OpenAI(max_tokens=10) output = await llm.agenerate(["Hello, how are you?"]) assert isinstance(output, LLMResult) @pytest.mark.asyncio async def test_openai_async_streaming_callback() -> None: """Test that streaming correctly invokes on_llm_new_token callback.""" callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) llm = OpenAI( max_tokens=10, streaming=True, temperature=0, callback_manager=callback_manager, verbose=True, ) result = await llm.agenerate(["Write me a sentence with 100 words."]) assert callback_handler.llm_streams == 10 assert isinstance(result, LLMResult) def test_openai_chat_wrong_class() -> None: """Test OpenAIChat with wrong class still works.""" llm = OpenAI(model_name="gpt-3.5-turbo") output = llm("Say foo:") assert isinstance(output, str) def test_openai_chat() -> None: """Test OpenAIChat.""" llm = OpenAIChat(max_tokens=10) output = llm("Say foo:") assert isinstance(output, str) def test_openai_chat_streaming() -> None: """Test OpenAIChat with streaming option.""" llm = OpenAIChat(max_tokens=10, streaming=True) output = llm("Say foo:") assert isinstance(output, str) def test_openai_chat_streaming_callback() -> None: """Test that streaming correctly invokes on_llm_new_token callback.""" callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) llm = OpenAIChat( max_tokens=10, streaming=True, temperature=0, callback_manager=callback_manager, verbose=True, ) llm("Write me a sentence with 100 words.") assert callback_handler.llm_streams != 0 @pytest.mark.asyncio async def test_openai_chat_async_generate() -> None: """Test async chat.""" llm = OpenAIChat(max_tokens=10) output = await llm.agenerate(["Hello, how are you?"]) assert isinstance(output, LLMResult) @pytest.mark.asyncio async def test_openai_chat_async_streaming_callback() -> None: """Test that streaming correctly invokes on_llm_new_token callback.""" callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) llm = OpenAIChat( max_tokens=10, streaming=True, temperature=0, callback_manager=callback_manager, verbose=True, ) result = await llm.agenerate(["Write me a sentence with 100 words."]) assert callback_handler.llm_streams != 0 assert isinstance(result, LLMResult) def test_openai_modelname_to_contextsize_valid() -> None: """Test model name to context size on a valid model.""" assert OpenAI().modelname_to_contextsize("davinci") == 2049 def test_openai_modelname_to_contextsize_invalid() -> None: """Test model name to context size on an invalid model.""" with pytest.raises(ValueError): OpenAI().modelname_to_contextsize("foobar")