"""Test Qdrant functionality.""" from typing import Callable, Optional import pytest from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores import Qdrant from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings @pytest.mark.parametrize( ["content_payload_key", "metadata_payload_key"], [ (Qdrant.CONTENT_KEY, Qdrant.METADATA_KEY), ("foo", "bar"), (Qdrant.CONTENT_KEY, "bar"), ("foo", Qdrant.METADATA_KEY), ], ) def test_qdrant(content_payload_key: str, metadata_payload_key: str) -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] docsearch = Qdrant.from_texts( texts, FakeEmbeddings(), location=":memory:", content_payload_key=content_payload_key, metadata_payload_key=metadata_payload_key, ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo")] def test_qdrant_add_documents() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] docsearch: Qdrant = Qdrant.from_texts(texts, FakeEmbeddings(), location=":memory:") new_texts = ["foobar", "foobaz"] docsearch.add_documents([Document(page_content=content) for content in new_texts]) output = docsearch.similarity_search("foobar", k=1) # FakeEmbeddings return the same query embedding as the first document embedding # computed in `embedding.embed_documents`. Since embed_documents is called twice, # "foo" embedding is the same as "foobar" embedding assert output == [Document(page_content="foobar")] or output == [ Document(page_content="foo") ] @pytest.mark.parametrize( ["content_payload_key", "metadata_payload_key"], [ (Qdrant.CONTENT_KEY, Qdrant.METADATA_KEY), ("test_content", "test_payload"), (Qdrant.CONTENT_KEY, "payload_test"), ("content_test", Qdrant.METADATA_KEY), ], ) def test_qdrant_with_metadatas( content_payload_key: str, metadata_payload_key: str ) -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = Qdrant.from_texts( texts, FakeEmbeddings(), metadatas=metadatas, location=":memory:", content_payload_key=content_payload_key, metadata_payload_key=metadata_payload_key, ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo", metadata={"page": 0})] def test_qdrant_similarity_search_filters() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = Qdrant.from_texts( texts, FakeEmbeddings(), metadatas=metadatas, location=":memory:", ) output = docsearch.similarity_search("foo", k=1, filter={"page": 1}) assert output == [Document(page_content="bar", metadata={"page": 1})] @pytest.mark.parametrize( ["content_payload_key", "metadata_payload_key"], [ (Qdrant.CONTENT_KEY, Qdrant.METADATA_KEY), ("test_content", "test_payload"), (Qdrant.CONTENT_KEY, "payload_test"), ("content_test", Qdrant.METADATA_KEY), ], ) def test_qdrant_max_marginal_relevance_search( content_payload_key: str, metadata_payload_key: str ) -> None: """Test end to end construction and MRR search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = Qdrant.from_texts( texts, FakeEmbeddings(), metadatas=metadatas, location=":memory:", content_payload_key=content_payload_key, metadata_payload_key=metadata_payload_key, ) output = docsearch.max_marginal_relevance_search("foo", k=2, fetch_k=3) assert output == [ Document(page_content="foo", metadata={"page": 0}), Document(page_content="bar", metadata={"page": 1}), ] @pytest.mark.parametrize( ["embeddings", "embedding_function"], [ (FakeEmbeddings(), None), (FakeEmbeddings().embed_query, None), (None, FakeEmbeddings().embed_query), ], ) def test_qdrant_embedding_interface( embeddings: Optional[Embeddings], embedding_function: Optional[Callable] ) -> None: from qdrant_client import QdrantClient client = QdrantClient(":memory:") collection_name = "test" Qdrant( client, collection_name, embeddings=embeddings, embedding_function=embedding_function, ) @pytest.mark.parametrize( ["embeddings", "embedding_function"], [ (FakeEmbeddings(), FakeEmbeddings().embed_query), (None, None), ], ) def test_qdrant_embedding_interface_raises( embeddings: Optional[Embeddings], embedding_function: Optional[Callable] ) -> None: from qdrant_client import QdrantClient client = QdrantClient(":memory:") collection_name = "test" with pytest.raises(ValueError): Qdrant( client, collection_name, embeddings=embeddings, embedding_function=embedding_function, )