{ "cells": [ { "cell_type": "markdown", "id": "9e9b7651", "metadata": {}, "source": [ "# Azure OpenAI\n", "\n", "This notebook goes over how to use Langchain with [Azure OpenAI](https://aka.ms/azure-openai).\n", "\n", "The Azure OpenAI API is compatible with OpenAI's API. The `openai` Python package makes it easy to use both OpenAI and Azure OpenAI. You can call Azure OpenAI the same way you call OpenAI with the exceptions noted below.\n", "\n", "## API configuration\n", "You can configure the `openai` package to use Azure OpenAI using environment variables. The following is for `bash`:\n", "\n", "```bash\n", "# Set this to `azure`\n", "export OPENAI_API_TYPE=azure\n", "# The API version you want to use: set this to `2022-12-01` for the released version.\n", "export OPENAI_API_VERSION=2022-12-01\n", "# The base URL for your Azure OpenAI resource. You can find this in the Azure portal under your Azure OpenAI resource.\n", "export OPENAI_API_BASE=https://your-resource-name.openai.azure.com\n", "# The API key for your Azure OpenAI resource. You can find this in the Azure portal under your Azure OpenAI resource.\n", "export OPENAI_API_KEY=\n", "```\n", "\n", "Alternatively, you can configure the API right within your running Python environment:\n", "\n", "```python\n", "import os\n", "os.environ[\"OPENAI_API_TYPE\"] = \"azure\"\n", "...\n", "```\n", "\n", "## Deployments\n", "With Azure OpenAI, you set up your own deployments of the common GPT-3 and Codex models. When calling the API, you need to specify the deployment you want to use.\n", "\n", "Let's say your deployment name is `text-davinci-002-prod`. In the `openai` Python API, you can specify this deployment with the `engine` parameter. For example:\n", "\n", "```python\n", "import openai\n", "\n", "response = openai.Completion.create(\n", " engine=\"text-davinci-002-prod\",\n", " prompt=\"This is a test\",\n", " max_tokens=5\n", ")\n", "```\n" ] }, { "cell_type": "code", "execution_count": null, "id": "89fdb593-5a42-4098-87b7-1496fa511b1c", "metadata": { "tags": [] }, "outputs": [], "source": [ "!pip install openai" ] }, { "cell_type": "code", "execution_count": 1, "id": "8fad2a6e", "metadata": {}, "outputs": [], "source": [ "# Import Azure OpenAI\n", "from langchain.llms import AzureOpenAI" ] }, { "cell_type": "code", "execution_count": 2, "id": "8c80213a", "metadata": {}, "outputs": [], "source": [ "# Create an instance of Azure OpenAI\n", "# Replace the deployment name with your own\n", "llm = AzureOpenAI(deployment_name=\"text-davinci-002-prod\", model_name=\"text-davinci-002\")" ] }, { "cell_type": "code", "execution_count": 3, "id": "592dc404", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'\\n\\nWhy did the chicken cross the road?\\n\\nTo get to the other side.'" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Run the LLM\n", "llm(\"Tell me a joke\")" ] }, { "cell_type": "markdown", "id": "bbfebea1", "metadata": {}, "source": [ "We can also print the LLM and see its custom print." ] }, { "cell_type": "code", "execution_count": 4, "id": "9c33fa19", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1mAzureOpenAI\u001b[0m\n", "Params: {'deployment_name': 'text-davinci-002', 'model_name': 'text-davinci-002', 'temperature': 0.7, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1}\n" ] } ], "source": [ "print(llm)" ] }, { "cell_type": "code", "execution_count": null, "id": "5a8b5917", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" }, "vscode": { "interpreter": { "hash": "3bae61d45a4f4d73ecea8149862d4bfbae7d4d4a2f71b6e609a1be8f6c8d4298" } } }, "nbformat": 4, "nbformat_minor": 5 }