{ "cells": [ { "cell_type": "markdown", "id": "593f7553-7038-498e-96d4-8255e5ce34f0", "metadata": {}, "source": [ "# Async API for Chain\n", "\n", "LangChain provides async support for Chains by leveraging the [asyncio](https://docs.python.org/3/library/asyncio.html) library.\n", "\n", "Async methods are currently supported in `LLMChain` (through `arun`, `apredict`, `acall`) and `LLMMathChain` (through `arun` and `acall`), `ChatVectorDBChain`, and [QA chains](../index_examples/question_answering.ipynb). Async support for other chains is on the roadmap." ] }, { "cell_type": "code", "execution_count": 1, "id": "c19c736e-ca74-4726-bb77-0a849bcc2960", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "BrightSmile Toothpaste Company\n", "\n", "\n", "BrightSmile Toothpaste Co.\n", "\n", "\n", "BrightSmile Toothpaste\n", "\n", "\n", "Gleaming Smile Inc.\n", "\n", "\n", "SparkleSmile Toothpaste\n", "\u001B[1mConcurrent executed in 1.54 seconds.\u001B[0m\n", "\n", "\n", "BrightSmile Toothpaste Co.\n", "\n", "\n", "MintyFresh Toothpaste Co.\n", "\n", "\n", "SparkleSmile Toothpaste.\n", "\n", "\n", "Pearly Whites Toothpaste Co.\n", "\n", "\n", "BrightSmile Toothpaste.\n", "\u001B[1mSerial executed in 6.38 seconds.\u001B[0m\n" ] } ], "source": [ "import asyncio\n", "import time\n", "\n", "from langchain.llms import OpenAI\n", "from langchain.prompts import PromptTemplate\n", "from langchain.chains import LLMChain\n", "\n", "\n", "def generate_serially():\n", " llm = OpenAI(temperature=0.9)\n", " prompt = PromptTemplate(\n", " input_variables=[\"product\"],\n", " template=\"What is a good name for a company that makes {product}?\",\n", " )\n", " chain = LLMChain(llm=llm, prompt=prompt)\n", " for _ in range(5):\n", " resp = chain.run(product=\"toothpaste\")\n", " print(resp)\n", "\n", "\n", "async def async_generate(chain):\n", " resp = await chain.arun(product=\"toothpaste\")\n", " print(resp)\n", "\n", "\n", "async def generate_concurrently():\n", " llm = OpenAI(temperature=0.9)\n", " prompt = PromptTemplate(\n", " input_variables=[\"product\"],\n", " template=\"What is a good name for a company that makes {product}?\",\n", " )\n", " chain = LLMChain(llm=llm, prompt=prompt)\n", " tasks = [async_generate(chain) for _ in range(5)]\n", " await asyncio.gather(*tasks)\n", "\n", "s = time.perf_counter()\n", "# If running this outside of Jupyter, use asyncio.run(generate_concurrently())\n", "await generate_concurrently()\n", "elapsed = time.perf_counter() - s\n", "print('\\033[1m' + f\"Concurrent executed in {elapsed:0.2f} seconds.\" + '\\033[0m')\n", "\n", "s = time.perf_counter()\n", "generate_serially()\n", "elapsed = time.perf_counter() - s\n", "print('\\033[1m' + f\"Serial executed in {elapsed:0.2f} seconds.\" + '\\033[0m')\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 5 }