The current prompt specifically instructs the LLM to use the `LIMIT`
clause. This will cause issues with MS SQL Server, which uses `SELECT
TOP` instead of `LIMIT`. The generated SQL will use `LIMIT`; the
instruction to "always limit... using the LIMIT clause" seems to
override the "create a syntactically correct mssql query to run"
portion. Reported here:
https://github.com/hwchase17/langchain/issues/1103#issuecomment-1441144224
I don't have access to a SQL Server instance to test, but removing that
part of the prompt in OpenAI Playground results in the correct `SELECT
TOP` syntax, whereas keeping it in results in the `LIMIT` clause, even
when instructing it to generate syntactically correct mssql. It's also
still correctly using `LIMIT` in my MariaDB database. I think in this
case we can assume that the model will select the appropriate method
based on the dialect specified.
In general, it would be nice to be able to test a suite of SQL dialects
for things like dialect-specific syntax and other issues we've run into
in the past, but I'm not quite sure how to best approach that yet.
Link for easier navigation (it's not immediately clear where to find
more info on SimpleSequentialChain (3 clicks away)
---------
Co-authored-by: Larry Fisherman <l4rryfisherman@protonmail.com>
With the current method used to get the SQL table info, sqlite internal
schema tables are being included and are not being handled correctly by
sqlalchemy because the columns have no types. This is easy to see with
the Chinook database:
```python
db = SQLDatabase.from_uri("sqlite:///Chinook.db")
print(db.table_info)
```
```python
...
sqlalchemy.exc.CompileError: (in table 'sqlite_sequence', column 'name'): Can't generate DDL for NullType(); did you forget to specify a type on this Column?
```
SQLAlchemy 2.0 [ignores these by
default](63d90b0f44/lib/sqlalchemy/dialects/sqlite/base.py (L856-L880)):
63d90b0f44/lib/sqlalchemy/dialects/sqlite/base.py (L2096-L2123)
When I try to import the Class HuggingFaceEndpoint I get an Import
Error: cannot import name 'HuggingFaceEndpoint' from 'langchain'.
(langchain version 0.0.88)
These two imports work fine: from langchain import HuggingFacePipeline
and from langchain import HuggingFaceHub.
So I corrected the import statement in the example. There is probably a
better solution to this, but this fixes the Error for me.
It is useful to be able to specify `verbose` or `memory` while still
keeping the chain's overall structure.
---------
Co-authored-by: Francisco Ingham <>
Added a GitBook document loader. It lets you both, (1) fetch text from
any single GitBook page, or (2) fetch all relative paths and return
their respective content in Documents.
I've modified the `scrape` method in the `WebBaseLoader` to accept
custom web paths if given, but happy to remove it and move that logic
into the `GitbookLoader` itself.
### Description
This PR adds a wrapper which adds support for the OpenSearch vector
database. Using opensearch-py client we are ingesting the embeddings of
given text into opensearch cluster using Bulk API. We can perform the
`similarity_search` on the index using the 3 popular searching methods
of OpenSearch k-NN plugin:
- `Approximate k-NN Search` use approximate nearest neighbor (ANN)
algorithms from the [nmslib](https://github.com/nmslib/nmslib),
[faiss](https://github.com/facebookresearch/faiss), and
[Lucene](https://lucene.apache.org/) libraries to power k-NN search.
- `Script Scoring` extends OpenSearch’s script scoring functionality to
execute a brute force, exact k-NN search.
- `Painless Scripting` adds the distance functions as painless
extensions that can be used in more complex combinations. Also, supports
brute force, exact k-NN search like Script Scoring.
### Issues Resolved
https://github.com/hwchase17/langchain/issues/1054
---------
Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
Follow-up of @hinthornw's PR:
- Migrate the Tool abstraction to a separate file (`BaseTool`).
- `Tool` implementation of `BaseTool` takes in function and coroutine to
more easily maintain backwards compatibility
- Add a Toolkit abstraction that can own the generation of tools around
a shared concept or state
---------
Co-authored-by: William FH <13333726+hinthornw@users.noreply.github.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Francisco Ingham <fpingham@gmail.com>
Co-authored-by: Dhruv Anand <105786647+dhruv-anand-aintech@users.noreply.github.com>
Co-authored-by: cragwolfe <cragcw@gmail.com>
Co-authored-by: Anton Troynikov <atroyn@users.noreply.github.com>
Co-authored-by: Oliver Klingefjord <oliver@klingefjord.com>
Co-authored-by: William Fu-Hinthorn <whinthorn@Williams-MBP-3.attlocal.net>
Co-authored-by: Bruno Bornsztein <bruno.bornsztein@gmail.com>
In the similarity search, the pinecone namespace is not used, which
makes the bot return _I don't know_ where the embeddings are stored in
the pinecone namespace. Now we can query by passing the namespace
optionally.
```result = qa({"question": query, "chat_history": chat_history, "namespace":"01gshyhjcfgkq1q5wxjtm17gjh"})```