Commit Graph

8 Commits

Author SHA1 Message Date
Leonid Ganeline
c7ca350cd3
Fix class promotion (#6187)
In LangChain, all module classes are enumerated in the `__init__.py`
file of the correspondent module. But some classes were missed and were
not included in the module `__init__.py`

This PR:
- added the missed classes to the module `__init__.py` files
- `__init__.py:__all_` variable value (a list of the class names) was
sorted
- `langchain.tools.sql_database.tool.QueryCheckerTool` was renamed into
the `QuerySQLCheckerTool` because it conflicted with
`langchain.tools.spark_sql.tool.QueryCheckerTool`
- changes to `pyproject.toml`:
  - added `pgvector` to `pyproject.toml:extended_testing`
- added `pandas` to
`pyproject.toml:[tool.poetry.group.test.dependencies]`
- commented out the `streamlit` from `collbacks/__init__.py`, It is
because now the `streamlit` requires Python >=3.7, !=3.9.7
- fixed duplicate names in `tools`
- fixed correspondent ut-s

#### Who can review?
@hwchase17
@dev2049
2023-06-18 16:55:18 -07:00
Harrison Chase
2da8c48be1
Harrison/datetime parser (#4693)
Co-authored-by: Jacob Valdez <jacobfv@msn.com>
Co-authored-by: Jacob Valdez <jacob.valdez@limboid.ai>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-05-29 07:52:30 -07:00
Harrison Chase
ce5d97bcb3
Harrison/guarded output parser (#1804)
Co-authored-by: jerwelborn <jeremy.welborn@gmail.com>
2023-03-21 22:07:23 -07:00
jerwelborn
55efbb8a7e
pydantic/json parsing (#1722)
```
class Joke(BaseModel):
    setup: str = Field(description="question to set up a joke")
    punchline: str = Field(description="answer to resolve the joke")

joke_query = "Tell me a joke."

# Or, an example with compound type fields.
#class FloatArray(BaseModel):
#    values: List[float] = Field(description="list of floats")
#
#float_array_query = "Write out a few terms of fiboacci."

model = OpenAI(model_name='text-davinci-003', temperature=0.0)
parser = PydanticOutputParser(pydantic_object=Joke)
prompt = PromptTemplate(
    template="Answer the user query.\n{format_instructions}\n{query}\n",
    input_variables=["query"],
    partial_variables={"format_instructions": parser.get_format_instructions()}
)

_input = prompt.format_prompt(query=joke_query)
print("Prompt:\n", _input.to_string())
output = model(_input.to_string())
print("Completion:\n", output)
parsed_output = parser.parse(output)
print("Parsed completion:\n", parsed_output)
```

```
Prompt:
 Answer the user query.
The output should be formatted as a JSON instance that conforms to the JSON schema below.  For example, the object {"foo":  ["bar", "baz"]} conforms to the schema {"foo": {"description": "a list of strings field", "type": "string"}}.

Here is the output schema:
---
{"setup": {"description": "question to set up a joke", "type": "string"}, "punchline": {"description": "answer to resolve the joke", "type": "string"}}
---

Tell me a joke.

Completion:
 {"setup": "Why don't scientists trust atoms?", "punchline": "Because they make up everything!"}

Parsed completion:
 setup="Why don't scientists trust atoms?" punchline='Because they make up everything!'
```

Ofc, works only with LMs of sufficient capacity. DaVinci is reliable but
not always.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-03-16 21:43:11 -07:00
Harrison Chase
b84d190fd0
Harrison/gr int (#1700)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-03-15 13:22:20 -07:00
Luis
562d9891ea
Add regex dict: (#1616)
This class enables us to send a dictionary containing an output key and
the expected format, which in turn allows us to retrieve the result of
the matching formats and extract specific information from it.

To exclude irrelevant information from our return dictionary, we can
prompt the LLM to use a specific command that notifies us when it
doesn't know the answer. We refer to this variable as the
"no_update_value".

Regarding the updated regular expression pattern
(r"{}:\s?([^.'\n']*).?"), it enables us to retrieve a format as 'Output
Key':'value'.

We have improved the regex by adding an optional space between ':' and
'value' with "s?", and by excluding points and line jumps from the
matches using "[^.'\n']*".
2023-03-13 23:05:39 -07:00
Harrison Chase
df6c33d4b3
Harrison/new output parser (#1617) 2023-03-13 15:08:39 -07:00
Harrison Chase
c9b5a30b37
move output parsing (#1605) 2023-03-11 16:41:03 -08:00