Commit Graph

23 Commits

Author SHA1 Message Date
Leonid Ganeline
92a5f00ffb
docs: ecosystem/integrations update 5 (#5752)
- added missed integration to `docs/ecosystem/integrations/`
- updated notebooks to consistent format: changed titles, file names;
added descriptions

#### Who can review?
 @hwchase17 
 @dev2049
2023-06-05 16:08:55 -07:00
Piyush Jain
562fdfc8f9
Bedrock llm and embeddings (#5464)
# Bedrock LLM and Embeddings
This PR adds a new LLM and an Embeddings class for the
[Bedrock](https://aws.amazon.com/bedrock) service. The PR also includes
example notebooks for using the LLM class in a conversation chain and
embeddings usage in creating an embedding for a query and document.

**Note**: AWS is doing a private release of the Bedrock service on
05/31/2023; users need to request access and added to an allowlist in
order to start using the Bedrock models and embeddings. Please use the
[Bedrock Home Page](https://aws.amazon.com/bedrock) to request access
and to learn more about the models available in Bedrock.

<!-- For a quicker response, figure out the right person to tag with @

  @hwchase17 - project lead

  Tracing / Callbacks
  - @agola11

  Async
  - @agola11

  DataLoaders
  - @eyurtsev

  Models
  - @hwchase17
  - @agola11

  Agents / Tools / Toolkits
  - @vowelparrot

  VectorStores / Retrievers / Memory
  - @dev2049

 -->
2023-05-31 07:17:01 -07:00
Jeff Vestal
46e181aa8b
Allow ElasticsearchEmbeddings to create a connection with ES Client object (#5321)
This PR adds a new method `from_es_connection` to the
`ElasticsearchEmbeddings` class allowing users to use Elasticsearch
clusters outside of Elastic Cloud.

Users can create an Elasticsearch Client object and pass that to the new
function.
The returned object is identical to the one returned by calling
`from_credentials`

```
# Create Elasticsearch connection
es_connection = Elasticsearch(
    hosts=['https://es_cluster_url:port'], 
    basic_auth=('user', 'password')
)

# Instantiate ElasticsearchEmbeddings using es_connection
embeddings = ElasticsearchEmbeddings.from_es_connection(
  model_id,
  es_connection,
)
```

I also added examples to the elasticsearch jupyter notebook

Fixes # https://github.com/hwchase17/langchain/issues/5239

---------

Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
2023-05-30 17:26:30 -07:00
Yves Maurer
88ed8e1cd6
Added the option of specifying a proxy for the OpenAI API (#5246)
# Added the option of specifying a proxy for the OpenAI API

Fixes #5243

Co-authored-by: Yves Maurer <>
2023-05-25 09:50:25 -07:00
Archon
5cdd9ab7e1
Add MiniMax embeddings (#5174)
- Add support for MiniMax embeddings

Doc: [MiniMax
embeddings](https://api.minimax.chat/document/guides/embeddings?id=6464722084cdc277dfaa966a)

---------

Co-authored-by: Archon <archongum@outlook.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
2023-05-25 06:57:49 -07:00
Harrison Chase
a775aa6389
Harrison/vertex (#5049)
Co-authored-by: Leonid Kuligin <kuligin@google.com>
Co-authored-by: Leonid Kuligin <lkuligin@yandex.ru>
Co-authored-by: sasha-gitg <44654632+sasha-gitg@users.noreply.github.com>
Co-authored-by: Justin Flick <Justinjayflick@gmail.com>
Co-authored-by: Justin Flick <jflick@homesite.com>
2023-05-24 15:51:12 -07:00
Harrison Chase
11c26ebb55
Harrison/modelscope (#5156)
Co-authored-by: thomas-yanxin <yx20001210@163.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
2023-05-24 08:06:45 -07:00
Jeff Vestal
cf19a2a59f
example usage (#5182)
Adding example usage for elasticsearch knn embeddings
[per](https://github.com/hwchase17/langchain/pull/3401#issuecomment-1548518389)


https://github.com/hwchase17/langchain/blob/master/langchain/embeddings/elasticsearch.py
2023-05-24 07:47:15 -07:00
Daniel King
de6e6c764e
Add MosaicML inference endpoints (#4607)
# Add MosaicML inference endpoints
This PR adds support in langchain for MosaicML inference endpoints. We
both serve a select few open source models, and allow customers to
deploy their own models using our inference service. Docs are here
(https://docs.mosaicml.com/en/latest/inference.html), and sign up form
is here (https://forms.mosaicml.com/demo?utm_source=langchain). I'm not
intimately familiar with the details of langchain, or the contribution
process, so please let me know if there is anything that needs fixing or
this is the wrong way to submit a new integration, thanks!

I'm also not sure what the procedure is for integration tests. I have
tested locally with my api key.

## Who can review?
@hwchase17

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-05-23 15:59:08 -07:00
Jeff Vestal
0b542a9706
Add ElasticsearchEmbeddings class for generating embeddings using Elasticsearch models (#3401)
This PR introduces a new module, `elasticsearch_embeddings.py`, which
provides a wrapper around Elasticsearch embedding models. The new
ElasticsearchEmbeddings class allows users to generate embeddings for
documents and query texts using a [model deployed in an Elasticsearch
cluster](https://www.elastic.co/guide/en/machine-learning/current/ml-nlp-model-ref.html#ml-nlp-model-ref-text-embedding).

### Main features:

1. The ElasticsearchEmbeddings class initializes with an Elasticsearch
connection object and a model_id, providing an interface to interact
with the Elasticsearch ML client through
[infer_trained_model](https://elasticsearch-py.readthedocs.io/en/v8.7.0/api.html?highlight=trained%20model%20infer#elasticsearch.client.MlClient.infer_trained_model)
.
2. The `embed_documents()` method generates embeddings for a list of
documents, and the `embed_query()` method generates an embedding for a
single query text.
3. The class supports custom input text field names in case the deployed
model expects a different field name than the default `text_field`.
4. The implementation is compatible with any model deployed in
Elasticsearch that generates embeddings as output.

### Benefits:

1. Simplifies the process of generating embeddings using Elasticsearch
models.
2. Provides a clean and intuitive interface to interact with the
Elasticsearch ML client.
3. Allows users to easily integrate Elasticsearch-generated embeddings.

Related issue https://github.com/hwchase17/langchain/issues/3400

---------

Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
2023-05-23 14:50:33 -07:00
Ismael G Serrano
41e2394c9c
Fix AzureOpenAI embeddings documentation example. model -> deployment (#4389)
# Documentation for Azure OpenAI embeddings model

- OPENAI_API_VERSION environment variable is needed for the endpoint
- The constructor does not work with model, it works with deployment.

I fixed it in the notebook.

(This is my first contribution)

## Who can review?

@hwchase17 
@agola

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-05-17 21:05:53 -07:00
Harrison Chase
a48810fb21
dont have openai_api_version by default (#4687)
an alternative to https://github.com/hwchase17/langchain/pull/4234/files
2023-05-14 18:26:08 -07:00
MichaelMDowling
36ee60c96c
Update \docs\modules\models\text_embedding\examples\openai.ipynb (#3976)
Single edit to: models/text_embedding/examples/openai.ipynb - Line 88:
changed from: "embeddings = OpenAIEmbeddings(model_name=\"ada\")" to
"embeddings = OpenAIEmbeddings()" as model_name is no longer part of the
OpenAIEmbeddings class.
2023-05-02 14:41:31 -07:00
Zander Chase
d6d697a41b
Sentence Transformers Aliasing (#3541)
The sentence transformers was a dup of the HF one. 

This is a breaking change (model_name vs. model) for anyone using
`SentenceTransformerEmbeddings(model="some/nondefault/model")`, but
since it was landed only this week it seems better to do this now rather
than doing a wrapper.
2023-04-25 23:29:20 -07:00
Zander Chase
20f530e9c5
Add Sentence Transformers Embeddings (#3409)
Add embeddings based on the sentence transformers library.
Add a notebook and integration tests.

Co-authored-by: khimaros <me@khimaros.com>
2023-04-23 18:25:20 -07:00
Zander Chase
61d40ba042
Fix Sagemaker Batch Endpoints (#3249)
Add different typing for @evandiewald 's heplful PR

---------

Co-authored-by: Evan Diewald <evandiewald@gmail.com>
2023-04-22 08:49:51 -07:00
Girish Sharma
9aed565f13
Fix missing import in AzureOpenAI embeddings example (#2625)
## Why this PR?

Fixes #2624
There's a missing import statement in AzureOpenAI embeddings example.

## What's new in this PR?

- Import `OpenAIEmbeddings` before creating it's object.

## How it's tested?
- By running notebook and creating embedding object.

Signed-off-by: letmerecall <girishsharma001@gmail.com>
2023-04-09 12:25:31 -07:00
Matt Royer
ad87584c35
Fix 'embeddings is not defined' (#2468)
Nothing major. The docs just give an error when you try to use
`embeddings` instead of `llama`.
2023-04-06 12:45:45 -07:00
Harrison Chase
f5da9a5161 cr 2023-04-04 07:26:47 -07:00
Harrison Chase
d85f57ef9c
Harrison/llama (#2314)
Co-authored-by: RJ Adriaansen <adriaansen@eshcc.eur.nl>
2023-04-02 14:57:45 -07:00
Harrison Chase
1c03205cc2
embedding docs (#2200) 2023-03-30 08:34:14 -07:00
Harrison Chase
eff5eed719
Harrison/jina (#2043)
Co-authored-by: numb3r3 <wangfelix87@gmail.com>
Co-authored-by: felix-wang <35718120+numb3r3@users.noreply.github.com>
2023-03-28 08:16:17 -07:00
Harrison Chase
705431aecc
big docs refactor (#1978)
Co-authored-by: Ankush Gola <ankush.gola@gmail.com>
2023-03-26 19:49:46 -07:00