# Check if generated Cypher code is wrapped in backticks
Some LLMs like the VertexAI like to explain how they generated the
Cypher statement and wrap the actual code in three backticks:
![Screenshot from 2023-06-01
08-08-23](https://github.com/hwchase17/langchain/assets/19948365/1d8eecb3-d26c-4882-8f5b-6a9bc7e93690)
I have observed a similar pattern with OpenAI chat models in a
conversational settings, where multiple user and assistant message are
provided to the LLM to generate Cypher statements, where then the LLM
wants to maybe apologize for previous steps or explain its thoughts.
Interestingly, both OpenAI and VertexAI wrap the code in three backticks
if they are doing any explaining or apologizing. Checking if the
generated cypher is wrapped in backticks seems like a low-hanging fruit
to expand the cypher search to other LLMs and conversational settings.
Use numexpr evaluate instead of the python REPL to avoid malicious code
injection.
Tested against the (limited) math dataset and got the same score as
before.
For more permissive tools (like the REPL tool itself), other approaches
ought to be provided (some combination of Sanitizer + Restricted python
+ unprivileged-docker + ...), but for a calculator tool, only
mathematical expressions should be permitted.
See https://github.com/hwchase17/langchain/issues/814
`combine_docs` does not go through the standard chain call path which
means that chain callbacks won't be triggered, meaning QA chains won't
be traced properly, this fixes that.
Also fix several errors in the chat_vector_db notebook
Provide shared memory capability for the Agent.
Inspired by #1293 .
## Problem
If both Agent and Tools (i.e., LLMChain) use the same memory, both of
them will save the context. It can be annoying in some cases.
## Solution
Create a memory wrapper that ignores the save and clear, thereby
preventing updates from Agent or Tools.
This PR adds
* `ZeroShotAgent.as_sql_agent`, which returns an agent for interacting
with a sql database. This builds off of `SQLDatabaseChain`. The main
advantages are 1) answering general questions about the db, 2) access to
a tool for double checking queries, and 3) recovering from errors
* `ZeroShotAgent.as_json_agent` which returns an agent for interacting
with json blobs.
* Several examples in notebooks
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Supporting asyncio in langchain primitives allows for users to run them
concurrently and creates more seamless integration with
asyncio-supported frameworks (FastAPI, etc.)
Summary of changes:
**LLM**
* Add `agenerate` and `_agenerate`
* Implement in OpenAI by leveraging `client.Completions.acreate`
**Chain**
* Add `arun`, `acall`, `_acall`
* Implement them in `LLMChain` and `LLMMathChain` for now
**Agent**
* Refactor and leverage async chain and llm methods
* Add ability for `Tools` to contain async coroutine
* Implement async SerpaPI `arun`
Create demo notebook.
Open questions:
* Should all the async stuff go in separate classes? I've seen both
patterns (keeping the same class and having async and sync methods vs.
having class separation)
Love the project, a ton of fun!
I think the PR is pretty self-explanatory, happy to make any changes! I
am working on using it in an `LLMBashChain` and may update as that
progresses.
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Add MemoryChain and ConversationChain as chains that take a docstore in
addition to the prompt, and use the docstore to stuff context into the
prompt. This can be used to have an ongoing conversation with a chatbot.
Probably needs a bit of refactoring for code quality
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>