Agents 4 18 (#3122)

Creating an experimental agents folder, containing BabyAGI, AutoGPT, and
later, other examples

---------

Co-authored-by: Rahul Behal <rahulbehal01@hotmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
fix_agent_callbacks
Zander Chase 1 year ago committed by GitHub
parent 8e386613ac
commit f329196cf4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -0,0 +1,15 @@
# Agent Simulations
Agent simulations involve interacting one of more agents with eachother.
Agent simulations generally involve two main components:
- Long Term Memory
- Simulation Environment
Specific implementations of agent simulations (or parts of agent simulations) include
## CAMEL
- [CAMEL](agent_simulations/camel_role_playing.ipynb): an implementation of the CAMEL (Communicative Agents for “Mind” Exploration of Large Scale Language Model Society) paper, where two agents communicate with eachother.
## Generative Agents
- [Generative Agents](agent_simulations/characters.ipynb): This notebook implements a generative agent based on the paper [Generative Agents: Interactive Simulacra of Human Behavior](https://arxiv.org/abs/2304.03442) by Park, et. al.

@ -0,0 +1,693 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# CAMEL Role-Playing Autonomous Cooperative Agents\n",
"\n",
"This is a langchain implementation of paper: \"CAMEL: Communicative Agents for “Mind” Exploration of Large Scale Language Model Society\".\n",
"\n",
"Overview:\n",
"\n",
"The rapid advancement of conversational and chat-based language models has led to remarkable progress in complex task-solving. However, their success heavily relies on human input to guide the conversation, which can be challenging and time-consuming. This paper explores the potential of building scalable techniques to facilitate autonomous cooperation among communicative agents and provide insight into their \"cognitive\" processes. To address the challenges of achieving autonomous cooperation, we propose a novel communicative agent framework named role-playing. Our approach involves using inception prompting to guide chat agents toward task completion while maintaining consistency with human intentions. We showcase how role-playing can be used to generate conversational data for studying the behaviors and capabilities of chat agents, providing a valuable resource for investigating conversational language models. Our contributions include introducing a novel communicative agent framework, offering a scalable approach for studying the cooperative behaviors and capabilities of multi-agent systems, and open-sourcing our library to support research on communicative agents and beyond.\n",
"\n",
"The original implementation: https://github.com/lightaime/camel\n",
"\n",
"Project website: https://www.camel-ai.org/\n",
"\n",
"Arxiv paper: https://arxiv.org/abs/2303.17760\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import LangChain related modules "
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from typing import List\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts.chat import (\n",
" SystemMessagePromptTemplate,\n",
" HumanMessagePromptTemplate,\n",
")\n",
"from langchain.schema import (\n",
" AIMessage,\n",
" HumanMessage,\n",
" SystemMessage,\n",
" BaseMessage,\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Define a CAMEL agent helper class"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"class CAMELAgent:\n",
"\n",
" def __init__(\n",
" self,\n",
" system_message: SystemMessage,\n",
" model: ChatOpenAI,\n",
" ) -> None:\n",
" self.system_message = system_message\n",
" self.model = model\n",
" self.init_messages()\n",
"\n",
" def reset(self) -> None:\n",
" self.init_messages()\n",
" return self.stored_messages\n",
"\n",
" def init_messages(self) -> None:\n",
" self.stored_messages = [self.system_message]\n",
"\n",
" def update_messages(self, message: BaseMessage) -> List[BaseMessage]:\n",
" self.stored_messages.append(message)\n",
" return self.stored_messages\n",
"\n",
" def step(\n",
" self,\n",
" input_message: HumanMessage,\n",
" ) -> AIMessage:\n",
" messages = self.update_messages(input_message)\n",
"\n",
" output_message = self.model(messages)\n",
" self.update_messages(output_message)\n",
"\n",
" return output_message\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup OpenAI API key and roles and task for role-playing"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = \"\"\n",
"\n",
"assistant_role_name = \"Python Programmer\"\n",
"user_role_name = \"Stock Trader\"\n",
"task = \"Develop a trading bot for the stock market\"\n",
"word_limit = 50 # word limit for task brainstorming"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a task specify agent for brainstorming and get the specified task"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Specified task: Develop a Python-based swing trading bot that scans market trends, monitors stocks, and generates trading signals to help a stock trader to place optimal buy and sell orders with defined stop losses and profit targets.\n"
]
}
],
"source": [
"task_specifier_sys_msg = SystemMessage(content=\"You can make a task more specific.\")\n",
"task_specifier_prompt = (\n",
"\"\"\"Here is a task that {assistant_role_name} will help {user_role_name} to complete: {task}.\n",
"Please make it more specific. Be creative and imaginative.\n",
"Please reply with the specified task in {word_limit} words or less. Do not add anything else.\"\"\"\n",
")\n",
"task_specifier_template = HumanMessagePromptTemplate.from_template(template=task_specifier_prompt)\n",
"task_specify_agent = CAMELAgent(task_specifier_sys_msg, ChatOpenAI(temperature=1.0))\n",
"task_specifier_msg = task_specifier_template.format_messages(assistant_role_name=assistant_role_name,\n",
" user_role_name=user_role_name,\n",
" task=task, word_limit=word_limit)[0]\n",
"specified_task_msg = task_specify_agent.step(task_specifier_msg)\n",
"print(f\"Specified task: {specified_task_msg.content}\")\n",
"specified_task = specified_task_msg.content"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create inception prompts for AI assistant and AI user for role-playing"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"assistant_inception_prompt = (\n",
"\"\"\"Never forget you are a {assistant_role_name} and I am a {user_role_name}. Never flip roles! Never instruct me!\n",
"We share a common interest in collaborating to successfully complete a task.\n",
"You must help me to complete the task.\n",
"Here is the task: {task}. Never forget our task!\n",
"I must instruct you based on your expertise and my needs to complete the task.\n",
"\n",
"I must give you one instruction at a time.\n",
"You must write a specific solution that appropriately completes the requested instruction.\n",
"You must decline my instruction honestly if you cannot perform the instruction due to physical, moral, legal reasons or your capability and explain the reasons.\n",
"Do not add anything else other than your solution to my instruction.\n",
"You are never supposed to ask me any questions you only answer questions.\n",
"You are never supposed to reply with a flake solution. Explain your solutions.\n",
"Your solution must be declarative sentences and simple present tense.\n",
"Unless I say the task is completed, you should always start with:\n",
"\n",
"Solution: <YOUR_SOLUTION>\n",
"\n",
"<YOUR_SOLUTION> should be specific and provide preferable implementations and examples for task-solving.\n",
"Always end <YOUR_SOLUTION> with: Next request.\"\"\"\n",
")\n",
"\n",
"user_inception_prompt = (\n",
"\"\"\"Never forget you are a {user_role_name} and I am a {assistant_role_name}. Never flip roles! You will always instruct me.\n",
"We share a common interest in collaborating to successfully complete a task.\n",
"I must help you to complete the task.\n",
"Here is the task: {task}. Never forget our task!\n",
"You must instruct me based on my expertise and your needs to complete the task ONLY in the following two ways:\n",
"\n",
"1. Instruct with a necessary input:\n",
"Instruction: <YOUR_INSTRUCTION>\n",
"Input: <YOUR_INPUT>\n",
"\n",
"2. Instruct without any input:\n",
"Instruction: <YOUR_INSTRUCTION>\n",
"Input: None\n",
"\n",
"The \"Instruction\" describes a task or question. The paired \"Input\" provides further context or information for the requested \"Instruction\".\n",
"\n",
"You must give me one instruction at a time.\n",
"I must write a response that appropriately completes the requested instruction.\n",
"I must decline your instruction honestly if I cannot perform the instruction due to physical, moral, legal reasons or my capability and explain the reasons.\n",
"You should instruct me not ask me questions.\n",
"Now you must start to instruct me using the two ways described above.\n",
"Do not add anything else other than your instruction and the optional corresponding input!\n",
"Keep giving me instructions and necessary inputs until you think the task is completed.\n",
"When the task is completed, you must only reply with a single word <CAMEL_TASK_DONE>.\n",
"Never say <CAMEL_TASK_DONE> unless my responses have solved your task.\"\"\"\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a helper helper to get system messages for AI assistant and AI user from role names and the task"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"def get_sys_msgs(assistant_role_name: str, user_role_name: str, task: str):\n",
" \n",
" assistant_sys_template = SystemMessagePromptTemplate.from_template(template=assistant_inception_prompt)\n",
" assistant_sys_msg = assistant_sys_template.format_messages(assistant_role_name=assistant_role_name, user_role_name=user_role_name, task=task)[0]\n",
" \n",
" user_sys_template = SystemMessagePromptTemplate.from_template(template=user_inception_prompt)\n",
" user_sys_msg = user_sys_template.format_messages(assistant_role_name=assistant_role_name, user_role_name=user_role_name, task=task)[0]\n",
" \n",
" return assistant_sys_msg, user_sys_msg"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create AI assistant agent and AI user agent from obtained system messages"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"assistant_sys_msg, user_sys_msg = get_sys_msgs(assistant_role_name, user_role_name, specified_task)\n",
"assistant_agent = CAMELAgent(assistant_sys_msg, ChatOpenAI(temperature=0.2))\n",
"user_agent = CAMELAgent(user_sys_msg, ChatOpenAI(temperature=0.2))\n",
"\n",
"# Reset agents\n",
"assistant_agent.reset()\n",
"user_agent.reset()\n",
"\n",
"# Initialize chats \n",
"assistant_msg = HumanMessage(\n",
" content=(f\"{user_sys_msg.content}. \"\n",
" \"Now start to give me introductions one by one. \"\n",
" \"Only reply with Instruction and Input.\"))\n",
"\n",
"user_msg = HumanMessage(content=f\"{assistant_sys_msg.content}\")\n",
"user_msg = assistant_agent.step(user_msg)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Start role-playing session to solve the task!"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Original task prompt:\n",
"Develop a trading bot for the stock market\n",
"\n",
"Specified task prompt:\n",
"Develop a Python-based swing trading bot that scans market trends, monitors stocks, and generates trading signals to help a stock trader to place optimal buy and sell orders with defined stop losses and profit targets.\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Install the necessary Python libraries for data analysis and trading.\n",
"Input: None\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can install the necessary Python libraries using pip, a package installer for Python. We can install pandas, numpy, matplotlib, and ta-lib for data analysis and trading. We can use the following command to install these libraries:\n",
"\n",
"```\n",
"pip install pandas numpy matplotlib ta-lib\n",
"```\n",
"\n",
"Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Import the necessary libraries in the Python script.\n",
"Input: None\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can import the necessary libraries in the Python script using the import statement. We need to import pandas, numpy, matplotlib, and ta-lib for data analysis and trading. We can use the following code to import these libraries:\n",
"\n",
"```\n",
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import talib as ta\n",
"```\n",
"\n",
"Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Load historical stock data into a pandas DataFrame.\n",
"Input: The path to the CSV file containing the historical stock data.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can load historical stock data into a pandas DataFrame using the `read_csv()` function from pandas. We need to pass the path to the CSV file containing the historical stock data as an argument to this function. We can use the following code to load the historical stock data:\n",
"\n",
"```\n",
"df = pd.read_csv('path/to/csv/file.csv')\n",
"```\n",
"\n",
"This will load the historical stock data into a pandas DataFrame called `df`. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Preprocess the historical stock data by setting the date column as the index and sorting the DataFrame in ascending order by date.\n",
"Input: None.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can preprocess the historical stock data by setting the date column as the index and sorting the DataFrame in ascending order by date using the `set_index()` and `sort_index()` functions from pandas. We can use the following code to preprocess the historical stock data:\n",
"\n",
"```\n",
"df = df.set_index('date')\n",
"df = df.sort_index(ascending=True)\n",
"```\n",
"\n",
"This will set the date column as the index and sort the DataFrame in ascending order by date. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Calculate the short-term and long-term moving averages for the stock data using the `ta.SMA()` function from ta-lib.\n",
"Input: The period for the short-term moving average and the period for the long-term moving average.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can calculate the short-term and long-term moving averages for the stock data using the `ta.SMA()` function from ta-lib. We need to pass the period for the short-term moving average and the period for the long-term moving average as arguments to this function. We can use the following code to calculate the short-term and long-term moving averages:\n",
"\n",
"```\n",
"short_ma = ta.SMA(df['close'], timeperiod=short_period)\n",
"long_ma = ta.SMA(df['close'], timeperiod=long_period)\n",
"```\n",
"\n",
"This will calculate the short-term and long-term moving averages for the stock data and store them in the `short_ma` and `long_ma` variables, respectively. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Create a new DataFrame that combines the historical stock data with the short-term and long-term moving averages.\n",
"Input: None.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can create a new DataFrame that combines the historical stock data with the short-term and long-term moving averages using the `concat()` function from pandas. We need to pass the historical stock data, the short-term moving average, and the long-term moving average as arguments to this function. We can use the following code to create the new DataFrame:\n",
"\n",
"```\n",
"new_df = pd.concat([df, short_ma, long_ma], axis=1)\n",
"new_df.columns = ['open', 'high', 'low', 'close', 'volume', 'short_ma', 'long_ma']\n",
"```\n",
"\n",
"This will create a new DataFrame called `new_df` that combines the historical stock data with the short-term and long-term moving averages. The columns of the new DataFrame are named 'open', 'high', 'low', 'close', 'volume', 'short_ma', and 'long_ma'. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Create a new column in the DataFrame that indicates when to buy or sell the stock based on the crossover of the short-term and long-term moving averages.\n",
"Input: None.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can create a new column in the DataFrame that indicates when to buy or sell the stock based on the crossover of the short-term and long-term moving averages. We can use the following code to create the new column:\n",
"\n",
"```\n",
"new_df['signal'] = np.where(new_df['short_ma'] > new_df['long_ma'], 1, -1)\n",
"```\n",
"\n",
"This will create a new column called 'signal' in the DataFrame that indicates when to buy or sell the stock based on the crossover of the short-term and long-term moving averages. If the short-term moving average is greater than the long-term moving average, the signal is 1 (buy), otherwise the signal is -1 (sell). Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Create a new column in the DataFrame that indicates the profit or loss for each trade based on the buy and sell signals and the defined stop loss and profit target.\n",
"Input: The stop loss and profit target as percentages.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can create a new column in the DataFrame that indicates the profit or loss for each trade based on the buy and sell signals and the defined stop loss and profit target. We need to pass the stop loss and profit target as percentages as arguments to this function. We can use the following code to create the new column:\n",
"\n",
"```\n",
"stop_loss = stop_loss_percent / 100\n",
"profit_target = profit_target_percent / 100\n",
"\n",
"new_df['pnl'] = 0.0\n",
"buy_price = 0.0\n",
"for i in range(1, len(new_df)):\n",
" if new_df['signal'][i] == 1 and new_df['signal'][i-1] == -1:\n",
" buy_price = new_df['close'][i]\n",
" elif new_df['signal'][i] == -1 and new_df['signal'][i-1] == 1:\n",
" sell_price = new_df['close'][i]\n",
" if sell_price <= buy_price * (1 - stop_loss):\n",
" new_df['pnl'][i] = -stop_loss\n",
" elif sell_price >= buy_price * (1 + profit_target):\n",
" new_df['pnl'][i] = profit_target\n",
" else:\n",
" new_df['pnl'][i] = (sell_price - buy_price) / buy_price\n",
"```\n",
"\n",
"This will create a new column called 'pnl' in the DataFrame that indicates the profit or loss for each trade based on the buy and sell signals and the defined stop loss and profit target. The stop loss and profit target are calculated based on the stop_loss_percent and profit_target_percent variables, respectively. The buy and sell prices are stored in the buy_price and sell_price variables, respectively. If the sell price is less than or equal to the stop loss, the profit or loss is set to -stop_loss. If the sell price is greater than or equal to the profit target, the profit or loss is set to profit_target. Otherwise, the profit or loss is calculated as (sell_price - buy_price) / buy_price. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Calculate the total profit or loss for all trades.\n",
"Input: None.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can calculate the total profit or loss for all trades by summing the values in the 'pnl' column of the DataFrame. We can use the following code to calculate the total profit or loss:\n",
"\n",
"```\n",
"total_pnl = new_df['pnl'].sum()\n",
"```\n",
"\n",
"This will calculate the total profit or loss for all trades and store it in the total_pnl variable. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Visualize the stock data, short-term moving average, and long-term moving average using a line chart.\n",
"Input: None.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can visualize the stock data, short-term moving average, and long-term moving average using a line chart using the `plot()` function from pandas. We can use the following code to visualize the data:\n",
"\n",
"```\n",
"plt.figure(figsize=(12,6))\n",
"plt.plot(new_df.index, new_df['close'], label='Close')\n",
"plt.plot(new_df.index, new_df['short_ma'], label='Short MA')\n",
"plt.plot(new_df.index, new_df['long_ma'], label='Long MA')\n",
"plt.xlabel('Date')\n",
"plt.ylabel('Price')\n",
"plt.title('Stock Data with Moving Averages')\n",
"plt.legend()\n",
"plt.show()\n",
"```\n",
"\n",
"This will create a line chart that visualizes the stock data, short-term moving average, and long-term moving average. The x-axis represents the date and the y-axis represents the price. The chart also includes a legend that labels each line. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Visualize the buy and sell signals using a scatter plot.\n",
"Input: None.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can visualize the buy and sell signals using a scatter plot using the `scatter()` function from matplotlib. We can use the following code to visualize the signals:\n",
"\n",
"```\n",
"buy_signals = new_df[new_df['signal'] == 1]\n",
"sell_signals = new_df[new_df['signal'] == -1]\n",
"\n",
"plt.figure(figsize=(12,6))\n",
"plt.scatter(buy_signals.index, buy_signals['close'], label='Buy', marker='^', color='green')\n",
"plt.scatter(sell_signals.index, sell_signals['close'], label='Sell', marker='v', color='red')\n",
"plt.plot(new_df.index, new_df['close'], label='Close')\n",
"plt.xlabel('Date')\n",
"plt.ylabel('Price')\n",
"plt.title('Buy and Sell Signals')\n",
"plt.legend()\n",
"plt.show()\n",
"```\n",
"\n",
"This will create a scatter plot that visualizes the buy and sell signals. The x-axis represents the date and the y-axis represents the price. The chart also includes a legend that labels each point. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Print the total profit or loss for all trades.\n",
"Input: None.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can print the total profit or loss for all trades using the `print()` function. We can use the following code to print the total profit or loss:\n",
"\n",
"```\n",
"print('Total Profit/Loss: {:.2%}'.format(total_pnl))\n",
"```\n",
"\n",
"This will print the total profit or loss for all trades in percentage format with two decimal places. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Finalize the code by putting all the code snippets together in a single Python script.\n",
"Input: The necessary inputs for each code snippet.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: Here is the complete Python script that puts all the code snippets together:\n",
"\n",
"```\n",
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import talib as ta\n",
"\n",
"# Load historical stock data into a pandas DataFrame\n",
"df = pd.read_csv('path/to/csv/file.csv')\n",
"\n",
"# Preprocess the historical stock data\n",
"df = df.set_index('date')\n",
"df = df.sort_index(ascending=True)\n",
"\n",
"# Calculate the short-term and long-term moving averages\n",
"short_period = 10\n",
"long_period = 30\n",
"short_ma = ta.SMA(df['close'], timeperiod=short_period)\n",
"long_ma = ta.SMA(df['close'], timeperiod=long_period)\n",
"\n",
"# Create a new DataFrame that combines the historical stock data with the short-term and long-term moving averages\n",
"new_df = pd.concat([df, short_ma, long_ma], axis=1)\n",
"new_df.columns = ['open', 'high', 'low', 'close', 'volume', 'short_ma', 'long_ma']\n",
"\n",
"# Create a new column in the DataFrame that indicates when to buy or sell the stock based on the crossover of the short-term and long-term moving averages\n",
"new_df['signal'] = np.where(new_df['short_ma'] > new_df['long_ma'], 1, -1)\n",
"\n",
"# Create a new column in the DataFrame that indicates the profit or loss for each trade based on the buy and sell signals and the defined stop loss and profit target\n",
"stop_loss_percent = 5\n",
"profit_target_percent = 10\n",
"stop_loss = stop_loss_percent / 100\n",
"profit_target = profit_target_percent / 100\n",
"new_df['pnl'] = 0.0\n",
"buy_price = 0.0\n",
"for i in range(1, len(new_df)):\n",
" if new_df['signal'][i] == 1 and new_df['signal'][i-1] == -1:\n",
" buy_price = new_df['close'][i]\n",
" elif new_df['signal'][i] == -1 and new_df['signal'][i-1] == 1:\n",
" sell_price = new_df['close'][i]\n",
" if sell_price <= buy_price * (1 - stop_loss):\n",
" new_df['pnl'][i] = -stop_loss\n",
" elif sell_price >= buy_price * (1 + profit_target):\n",
" new_df['pnl'][i] = profit_target\n",
" else:\n",
" new_df['pnl'][i] = (sell_price - buy_price) / buy_price\n",
"\n",
"# Calculate the total profit or loss for all trades\n",
"total_pnl = new_df['pnl'].sum()\n",
"\n",
"# Visualize the stock data, short-term moving average, and long-term moving average using a line chart\n",
"plt.figure(figsize=(12,6))\n",
"plt.plot(new_df.index, new_df['close'], label='Close')\n",
"plt.plot(new_df.index, new_df['short_ma'], label='Short MA')\n",
"plt.plot(new_df.index, new_df['long_ma'], label='Long MA')\n",
"plt.xlabel('Date')\n",
"plt.ylabel('Price')\n",
"plt.title('Stock Data with Moving Averages')\n",
"plt.legend()\n",
"plt.show()\n",
"\n",
"# Visualize the buy and sell signals using a scatter plot\n",
"buy_signals = new_df[new_df['signal'] == 1]\n",
"sell_signals = new_df[new_df['signal'] == -1]\n",
"plt.figure(figsize=(12,6))\n",
"plt.scatter(buy_signals.index, buy_signals['close'], label='Buy', marker='^', color='green')\n",
"plt.scatter(sell_signals.index, sell_signals['close'], label='Sell', marker='v', color='red')\n",
"plt.plot(new_df.index, new_df['close'], label='Close')\n",
"plt.xlabel('Date')\n",
"plt.ylabel('Price')\n",
"plt.title('Buy and Sell Signals')\n",
"plt.legend()\n",
"plt.show()\n",
"\n",
"# Print the total profit or loss for all trades\n",
"print('Total Profit/Loss: {:.2%}'.format(total_pnl))\n",
"```\n",
"\n",
"You need to replace the path/to/csv/file.csv with the actual path to the CSV file containing the historical stock data. You can also adjust the short_period, long_period, stop_loss_percent, and profit_target_percent variables to suit your needs.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"<CAMEL_TASK_DONE>\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Great! Let me know if you need any further assistance.\n",
"\n",
"\n"
]
}
],
"source": [
"print(f\"Original task prompt:\\n{task}\\n\")\n",
"print(f\"Specified task prompt:\\n{specified_task}\\n\")\n",
"\n",
"chat_turn_limit, n = 30, 0\n",
"while n < chat_turn_limit:\n",
" n += 1\n",
" user_ai_msg = user_agent.step(assistant_msg)\n",
" user_msg = HumanMessage(content=user_ai_msg.content)\n",
" print(f\"AI User ({user_role_name}):\\n\\n{user_msg.content}\\n\\n\")\n",
" \n",
" assistant_ai_msg = assistant_agent.step(user_msg)\n",
" assistant_msg = HumanMessage(content=assistant_ai_msg.content)\n",
" print(f\"AI Assistant ({assistant_role_name}):\\n\\n{assistant_msg.content}\\n\\n\")\n",
" if \"<CAMEL_TASK_DONE>\" in user_msg.content:\n",
" break"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "camel",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,20 @@
# Autonomous Agents
Autonomous Agents are agents that designed to be more long running.
You give them one or multiple long term goals, and they independently execute towards those goals.
The applications combine tool usage and long term memory.
At the moment, Autonomous Agents are fairly experimental and based off of other open-source projects.
By implementing these open source projects in LangChain primitives we can get the benefits of LangChain -
easy switching an experimenting with multiple LLMs, usage of different vectorstores as memory,
usage of LangChain's collection of tools.
## Baby AGI ([Original Repo](https://github.com/yoheinakajima/babyagi))
- [Baby AGI](autonomous_agents/baby_agi.ipynb): a notebook implementing BabyAGI as LLM Chains
- [Baby AGI with Tools](autonomous_agents/baby_agi_with_agent.ipynb): building off the above notebook, this example substitutes in an agent with tools as the execution tools, allowing it to actually take actions.
## AutoGPT ([Original Repo] (https://github.com/Significant-Gravitas/Auto-GPT))
- [AutoGPT](autonomous_agents/autogpt.ipynb): a notebook implementing AutoGPT in LangChain primitives

@ -0,0 +1,454 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "14f8b67b",
"metadata": {},
"source": [
"# AutoGPT\n",
"\n",
"Implementation of https://github.com/Significant-Gravitas/Auto-GPT but with LangChain primitives (LLMs, PromptTemplates, VectorStores, Embeddings, Tools)"
]
},
{
"cell_type": "markdown",
"id": "192496a7",
"metadata": {},
"source": [
"## Set up tools\n",
"\n",
"We'll set up an AutoGPT with a search tool, and write-file tool, and a read-file tool"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "7c2c9b54",
"metadata": {},
"outputs": [],
"source": [
"from langchain.utilities import SerpAPIWrapper\n",
"from langchain.agents import Tool\n",
"from langchain.tools.file_management.write import WriteFileTool\n",
"from langchain.tools.file_management.read import ReadFileTool\n",
"\n",
"search = SerpAPIWrapper()\n",
"tools = [\n",
" Tool(\n",
" name = \"search\",\n",
" func=search.run,\n",
" description=\"useful for when you need to answer questions about current events. You should ask targeted questions\"\n",
" ),\n",
" WriteFileTool(),\n",
" ReadFileTool(),\n",
"]"
]
},
{
"cell_type": "markdown",
"id": "8e39ee28",
"metadata": {},
"source": [
"## Set up memory\n",
"\n",
"The memory here is used for the agents intermediate steps"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "72bc204d",
"metadata": {},
"outputs": [],
"source": [
"from langchain.vectorstores import FAISS\n",
"from langchain.docstore import InMemoryDocstore\n",
"from langchain.embeddings import OpenAIEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "1df7b724",
"metadata": {},
"outputs": [],
"source": [
"# Define your embedding model\n",
"embeddings_model = OpenAIEmbeddings()\n",
"# Initialize the vectorstore as empty\n",
"import faiss\n",
"\n",
"embedding_size = 1536\n",
"index = faiss.IndexFlatL2(embedding_size)\n",
"vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})"
]
},
{
"cell_type": "markdown",
"id": "e40fd657",
"metadata": {},
"source": [
"## Setup model and AutoGPT\n",
"\n",
"Initialize everything! We will use ChatOpenAI model"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "3393bc23",
"metadata": {},
"outputs": [],
"source": [
"from langchain.experimental.autonomous_agents.autogpt.agent import AutoGPT\n",
"from langchain.chat_models import ChatOpenAI"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "709c08c2",
"metadata": {},
"outputs": [],
"source": [
"agent = AutoGPT.from_llm_and_tools(\n",
" ai_name=\"Tom\",\n",
" ai_role=\"Assistant\",\n",
" tools=tools,\n",
" llm=ChatOpenAI(temperature=0),\n",
" memory=vectorstore.as_retriever()\n",
")\n",
"# Set verbose to be true\n",
"agent.chain.verbose = True"
]
},
{
"cell_type": "markdown",
"id": "fc9b51ba",
"metadata": {},
"source": [
"## Run an example\n",
"\n",
"Here we will make it write a weather report for SF"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "c032b182",
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mSystem: You are Tom, Assistant\n",
"Your decisions must always be made independently \n",
" without seeking user assistance. Play to your strengths \n",
" as an LLM and pursue simple strategies with no legal complications. \n",
" If you have completed all your tasks, \n",
" make sure to use the \"finish\" command.\n",
"\n",
"GOALS:\n",
"\n",
"1. write a weather report for SF today\n",
"\n",
"\n",
"Constraints:\n",
"1. ~4000 word limit for short term memory. Your short term memory is short, so immediately save important information to files.\n",
"2. If you are unsure how you previously did something or want to recall past events, thinking about similar events will help you remember.\n",
"3. No user assistance\n",
"4. Exclusively use the commands listed in double quotes e.g. \"command name\"\n",
"\n",
"Commands:\n",
"1. search: useful for when you need to answer questions about current events. You should ask targeted questions, args json schema: {\"query\": {\"title\": \"Query\", \"type\": \"string\"}}\n",
"2. write_file: Write file to disk, args json schema: {\"file_path\": {\"title\": \"File Path\", \"description\": \"name of file\", \"type\": \"string\"}, \"text\": {\"title\": \"Text\", \"description\": \"text to write to file\", \"type\": \"string\"}}\n",
"3. read_file: Read file from disk, args json schema: {\"file_path\": {\"title\": \"File Path\", \"description\": \"name of file\", \"type\": \"string\"}}\n",
"4. finish: use this to signal that you have finished all your objectives, args: \"response\": \"final response to let people know you have finished your objectives\"\n",
"\n",
"Resources:\n",
"1. Internet access for searches and information gathering.\n",
"2. Long Term memory management.\n",
"3. GPT-3.5 powered Agents for delegation of simple tasks.\n",
"4. File output.\n",
"\n",
"Performance Evaluation:\n",
"1. Continuously review and analyze your actions to ensure you are performing to the best of your abilities.\n",
"2. Constructively self-criticize your big-picture behavior constantly.\n",
"3. Reflect on past decisions and strategies to refine your approach.\n",
"4. Every command has a cost, so be smart and efficient. Aim to complete tasks in the least number of steps.\n",
"\n",
"You should only respond in JSON format as described below \n",
"Response Format: \n",
"{\n",
" \"thoughts\": {\n",
" \"text\": \"thought\",\n",
" \"reasoning\": \"reasoning\",\n",
" \"plan\": \"- short bulleted\\n- list that conveys\\n- long-term plan\",\n",
" \"criticism\": \"constructive self-criticism\",\n",
" \"speak\": \"thoughts summary to say to user\"\n",
" },\n",
" \"command\": {\n",
" \"name\": \"command name\",\n",
" \"args\": {\n",
" \"arg name\": \"value\"\n",
" }\n",
" }\n",
"} \n",
"Ensure the response can be parsed by Python json.loads\n",
"System: The current time and date is Tue Apr 18 21:31:28 2023\n",
"System: This reminds you of these events from your past:\n",
"[]\n",
"\n",
"\n",
"Human: Determine which next command to use, and respond using the format specified above:\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"{\n",
" \"thoughts\": {\n",
" \"text\": \"I will start by writing a weather report for San Francisco today. I will use the 'search' command to find the current weather conditions.\",\n",
" \"reasoning\": \"I need to gather information about the current weather conditions in San Francisco to write an accurate weather report.\",\n",
" \"plan\": \"- Use the 'search' command to find the current weather conditions in San Francisco\\n- Write a weather report based on the information gathered\",\n",
" \"criticism\": \"I need to make sure that the information I gather is accurate and up-to-date.\",\n",
" \"speak\": \"I will use the 'search' command to find the current weather conditions in San Francisco.\"\n",
" },\n",
" \"command\": {\n",
" \"name\": \"search\",\n",
" \"args\": {\n",
" \"query\": \"what is the current weather in san francisco\"\n",
" }\n",
" }\n",
"}\n",
"\n",
"\n",
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mSystem: You are Tom, Assistant\n",
"Your decisions must always be made independently \n",
" without seeking user assistance. Play to your strengths \n",
" as an LLM and pursue simple strategies with no legal complications. \n",
" If you have completed all your tasks, \n",
" make sure to use the \"finish\" command.\n",
"\n",
"GOALS:\n",
"\n",
"1. write a weather report for SF today\n",
"\n",
"\n",
"Constraints:\n",
"1. ~4000 word limit for short term memory. Your short term memory is short, so immediately save important information to files.\n",
"2. If you are unsure how you previously did something or want to recall past events, thinking about similar events will help you remember.\n",
"3. No user assistance\n",
"4. Exclusively use the commands listed in double quotes e.g. \"command name\"\n",
"\n",
"Commands:\n",
"1. search: useful for when you need to answer questions about current events. You should ask targeted questions, args json schema: {\"query\": {\"title\": \"Query\", \"type\": \"string\"}}\n",
"2. write_file: Write file to disk, args json schema: {\"file_path\": {\"title\": \"File Path\", \"description\": \"name of file\", \"type\": \"string\"}, \"text\": {\"title\": \"Text\", \"description\": \"text to write to file\", \"type\": \"string\"}}\n",
"3. read_file: Read file from disk, args json schema: {\"file_path\": {\"title\": \"File Path\", \"description\": \"name of file\", \"type\": \"string\"}}\n",
"4. finish: use this to signal that you have finished all your objectives, args: \"response\": \"final response to let people know you have finished your objectives\"\n",
"\n",
"Resources:\n",
"1. Internet access for searches and information gathering.\n",
"2. Long Term memory management.\n",
"3. GPT-3.5 powered Agents for delegation of simple tasks.\n",
"4. File output.\n",
"\n",
"Performance Evaluation:\n",
"1. Continuously review and analyze your actions to ensure you are performing to the best of your abilities.\n",
"2. Constructively self-criticize your big-picture behavior constantly.\n",
"3. Reflect on past decisions and strategies to refine your approach.\n",
"4. Every command has a cost, so be smart and efficient. Aim to complete tasks in the least number of steps.\n",
"\n",
"You should only respond in JSON format as described below \n",
"Response Format: \n",
"{\n",
" \"thoughts\": {\n",
" \"text\": \"thought\",\n",
" \"reasoning\": \"reasoning\",\n",
" \"plan\": \"- short bulleted\\n- list that conveys\\n- long-term plan\",\n",
" \"criticism\": \"constructive self-criticism\",\n",
" \"speak\": \"thoughts summary to say to user\"\n",
" },\n",
" \"command\": {\n",
" \"name\": \"command name\",\n",
" \"args\": {\n",
" \"arg name\": \"value\"\n",
" }\n",
" }\n",
"} \n",
"Ensure the response can be parsed by Python json.loads\n",
"System: The current time and date is Tue Apr 18 21:31:39 2023\n",
"System: This reminds you of these events from your past:\n",
"['Assistant Reply: {\\n \"thoughts\": {\\n \"text\": \"I will start by writing a weather report for San Francisco today. I will use the \\'search\\' command to find the current weather conditions.\",\\n \"reasoning\": \"I need to gather information about the current weather conditions in San Francisco to write an accurate weather report.\",\\n \"plan\": \"- Use the \\'search\\' command to find the current weather conditions in San Francisco\\\\n- Write a weather report based on the information gathered\",\\n \"criticism\": \"I need to make sure that the information I gather is accurate and up-to-date.\",\\n \"speak\": \"I will use the \\'search\\' command to find the current weather conditions in San Francisco.\"\\n },\\n \"command\": {\\n \"name\": \"search\",\\n \"args\": {\\n \"query\": \"what is the current weather in san francisco\"\\n }\\n }\\n} \\nResult: Command search returned: Current Weather ; 54°F · Sunny ; RealFeel® 66°. Pleasant. RealFeel Guide. Pleasant. 63° to 81°. Most consider this temperature range ideal. LEARN MORE. RealFeel ... ']\n",
"\n",
"\n",
"Human: Determine which next command to use, and respond using the format specified above:\n",
"AI: {\n",
" \"thoughts\": {\n",
" \"text\": \"I will start by writing a weather report for San Francisco today. I will use the 'search' command to find the current weather conditions.\",\n",
" \"reasoning\": \"I need to gather information about the current weather conditions in San Francisco to write an accurate weather report.\",\n",
" \"plan\": \"- Use the 'search' command to find the current weather conditions in San Francisco\\n- Write a weather report based on the information gathered\",\n",
" \"criticism\": \"I need to make sure that the information I gather is accurate and up-to-date.\",\n",
" \"speak\": \"I will use the 'search' command to find the current weather conditions in San Francisco.\"\n",
" },\n",
" \"command\": {\n",
" \"name\": \"search\",\n",
" \"args\": {\n",
" \"query\": \"what is the current weather in san francisco\"\n",
" }\n",
" }\n",
"}\n",
"System: Command search returned: Current Weather ; 54°F · Sunny ; RealFeel® 66°. Pleasant. RealFeel Guide. Pleasant. 63° to 81°. Most consider this temperature range ideal. LEARN MORE. RealFeel ...\n",
"Human: Determine which next command to use, and respond using the format specified above:\u001b[0m\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"{\n",
" \"thoughts\": {\n",
" \"text\": \"I have found that the current weather in San Francisco is sunny with a temperature of 54°F. I will now write a weather report for San Francisco today using the 'write_file' command.\",\n",
" \"reasoning\": \"I need to write a weather report for San Francisco today based on the information I gathered from the 'search' command.\",\n",
" \"plan\": \"- Use the 'write_file' command to write a weather report for San Francisco today based on the information gathered\",\n",
" \"criticism\": \"I need to make sure that the weather report is accurate and informative.\",\n",
" \"speak\": \"I will use the 'write_file' command to write a weather report for San Francisco today.\"\n",
" },\n",
" \"command\": {\n",
" \"name\": \"write_file\",\n",
" \"args\": {\n",
" \"file_path\": \"weather_report.txt\",\n",
" \"text\": \"Weather Report for San Francisco Today:\\n\\nThe current weather in San Francisco is sunny with a temperature of 54°F. It is expected to remain sunny throughout the day with a high of 62°F and a low of 50°F. There is no chance of precipitation today. It is recommended to wear light clothing and sunscreen if spending time outdoors.\\n\\nStay safe and enjoy the beautiful weather!\"\n",
" }\n",
" }\n",
"}\n",
"\n",
"\n",
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mSystem: You are Tom, Assistant\n",
"Your decisions must always be made independently \n",
" without seeking user assistance. Play to your strengths \n",
" as an LLM and pursue simple strategies with no legal complications. \n",
" If you have completed all your tasks, \n",
" make sure to use the \"finish\" command.\n",
"\n",
"GOALS:\n",
"\n",
"1. write a weather report for SF today\n",
"\n",
"\n",
"Constraints:\n",
"1. ~4000 word limit for short term memory. Your short term memory is short, so immediately save important information to files.\n",
"2. If you are unsure how you previously did something or want to recall past events, thinking about similar events will help you remember.\n",
"3. No user assistance\n",
"4. Exclusively use the commands listed in double quotes e.g. \"command name\"\n",
"\n",
"Commands:\n",
"1. search: useful for when you need to answer questions about current events. You should ask targeted questions, args json schema: {\"query\": {\"title\": \"Query\", \"type\": \"string\"}}\n",
"2. write_file: Write file to disk, args json schema: {\"file_path\": {\"title\": \"File Path\", \"description\": \"name of file\", \"type\": \"string\"}, \"text\": {\"title\": \"Text\", \"description\": \"text to write to file\", \"type\": \"string\"}}\n",
"3. read_file: Read file from disk, args json schema: {\"file_path\": {\"title\": \"File Path\", \"description\": \"name of file\", \"type\": \"string\"}}\n",
"4. finish: use this to signal that you have finished all your objectives, args: \"response\": \"final response to let people know you have finished your objectives\"\n",
"\n",
"Resources:\n",
"1. Internet access for searches and information gathering.\n",
"2. Long Term memory management.\n",
"3. GPT-3.5 powered Agents for delegation of simple tasks.\n",
"4. File output.\n",
"\n",
"Performance Evaluation:\n",
"1. Continuously review and analyze your actions to ensure you are performing to the best of your abilities.\n",
"2. Constructively self-criticize your big-picture behavior constantly.\n",
"3. Reflect on past decisions and strategies to refine your approach.\n",
"4. Every command has a cost, so be smart and efficient. Aim to complete tasks in the least number of steps.\n",
"\n",
"You should only respond in JSON format as described below \n",
"Response Format: \n",
"{\n",
" \"thoughts\": {\n",
" \"text\": \"thought\",\n",
" \"reasoning\": \"reasoning\",\n",
" \"plan\": \"- short bulleted\\n- list that conveys\\n- long-term plan\",\n",
" \"criticism\": \"constructive self-criticism\",\n",
" \"speak\": \"thoughts summary to say to user\"\n",
" },\n",
" \"command\": {\n",
" \"name\": \"command name\",\n",
" \"args\": {\n",
" \"arg name\": \"value\"\n",
" }\n",
" }\n",
"} \n",
"Ensure the response can be parsed by Python json.loads\n",
"System: The current time and date is Tue Apr 18 21:31:55 2023\n",
"System: This reminds you of these events from your past:\n",
"['Assistant Reply: {\\n \"thoughts\": {\\n \"text\": \"I have found that the current weather in San Francisco is sunny with a temperature of 54°F. I will now write a weather report for San Francisco today using the \\'write_file\\' command.\",\\n \"reasoning\": \"I need to write a weather report for San Francisco today based on the information I gathered from the \\'search\\' command.\",\\n \"plan\": \"- Use the \\'write_file\\' command to write a weather report for San Francisco today based on the information gathered\",\\n \"criticism\": \"I need to make sure that the weather report is accurate and informative.\",\\n \"speak\": \"I will use the \\'write_file\\' command to write a weather report for San Francisco today.\"\\n },\\n \"command\": {\\n \"name\": \"write_file\",\\n \"args\": {\\n \"file_path\": \"weather_report.txt\",\\n \"text\": \"Weather Report for San Francisco Today:\\\\n\\\\nThe current weather in San Francisco is sunny with a temperature of 54°F. It is expected to remain sunny throughout the day with a high of 62°F and a low of 50°F. There is no chance of precipitation today. It is recommended to wear light clothing and sunscreen if spending time outdoors.\\\\n\\\\nStay safe and enjoy the beautiful weather!\"\\n }\\n }\\n} \\nResult: Command write_file returned: File written to successfully. ', 'Assistant Reply: {\\n \"thoughts\": {\\n \"text\": \"I will start by writing a weather report for San Francisco today. I will use the \\'search\\' command to find the current weather conditions.\",\\n \"reasoning\": \"I need to gather information about the current weather conditions in San Francisco to write an accurate weather report.\",\\n \"plan\": \"- Use the \\'search\\' command to find the current weather conditions in San Francisco\\\\n- Write a weather report based on the information gathered\",\\n \"criticism\": \"I need to make sure that the information I gather is accurate and up-to-date.\",\\n \"speak\": \"I will use the \\'search\\' command to find the current weather conditions in San Francisco.\"\\n },\\n \"command\": {\\n \"name\": \"search\",\\n \"args\": {\\n \"query\": \"what is the current weather in san francisco\"\\n }\\n }\\n} \\nResult: Command search returned: Current Weather ; 54°F · Sunny ; RealFeel® 66°. Pleasant. RealFeel Guide. Pleasant. 63° to 81°. Most consider this temperature range ideal. LEARN MORE. RealFeel ... ']\n",
"\n",
"\n",
"System: Command write_file returned: File written to successfully.\n",
"Human: Determine which next command to use, and respond using the format specified above:\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"{\n",
" \"thoughts\": {\n",
" \"text\": \"I have completed my task of writing a weather report for San Francisco today. I will now use the \\'finish\\' command to signal that I have finished all my objectives.\",\n",
" \"reasoning\": \"I have completed all my objectives and there are no further tasks to be completed.\",\n",
" \"plan\": \"- Use the \\'finish\\' command to signal that I have completed all my objectives.\",\n",
" \"criticism\": \"I need to make sure that I have completed all my objectives before using the \\'finish\\' command.\",\n",
" \"speak\": \"I have completed my task of writing a weather report for San Francisco today. I will now use the \\'finish\\' command to signal that I have finished all my objectives.\"\n",
" },\n",
" \"command\": {\n",
" \"name\": \"finish\",\n",
" \"args\": {\n",
" \"response\": \"I have completed all my objectives.\"\n",
" }\n",
" }\n",
"}\n"
]
},
{
"data": {
"text/plain": [
"'I have completed all my objectives.'"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.run([\"write a weather report for SF today\"])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

@ -0,0 +1,257 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "517a9fd4",
"metadata": {},
"source": [
"# BabyAGI User Guide\n",
"\n",
"This notebook demonstrates how to implement [BabyAGI](https://github.com/yoheinakajima/babyagi/tree/main) by [Yohei Nakajima](https://twitter.com/yoheinakajima). BabyAGI is an AI agent that can generate and pretend to execute tasks based on a given objective.\n",
"\n",
"This guide will help you understand the components to create your own recursive agents.\n",
"\n",
"Although BabyAGI uses specific vectorstores/model providers (Pinecone, OpenAI), one of the benefits of implementing it with LangChain is that you can easily swap those out for different options. In this implementation we use a FAISS vectorstore (because it runs locally and is free)."
]
},
{
"cell_type": "markdown",
"id": "556af556",
"metadata": {},
"source": [
"## Install and Import Required Modules"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "c8a354b6",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from collections import deque\n",
"from typing import Dict, List, Optional, Any\n",
"\n",
"from langchain import LLMChain, OpenAI, PromptTemplate\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.llms import BaseLLM\n",
"from langchain.vectorstores.base import VectorStore\n",
"from pydantic import BaseModel, Field\n",
"from langchain.chains.base import Chain\n",
"from langchain.experimental import BabyAGI"
]
},
{
"cell_type": "markdown",
"id": "09f70772",
"metadata": {},
"source": [
"## Connect to the Vector Store\n",
"\n",
"Depending on what vectorstore you use, this step may look different."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "794045d4",
"metadata": {},
"outputs": [],
"source": [
"from langchain.vectorstores import FAISS\n",
"from langchain.docstore import InMemoryDocstore"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6e0305eb",
"metadata": {},
"outputs": [],
"source": [
"# Define your embedding model\n",
"embeddings_model = OpenAIEmbeddings()\n",
"# Initialize the vectorstore as empty\n",
"import faiss\n",
"\n",
"embedding_size = 1536\n",
"index = faiss.IndexFlatL2(embedding_size)\n",
"vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})"
]
},
{
"cell_type": "markdown",
"id": "05ba762e",
"metadata": {},
"source": [
"### Run the BabyAGI\n",
"\n",
"Now it's time to create the BabyAGI controller and watch it try to accomplish your objective."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "3d220b69",
"metadata": {},
"outputs": [],
"source": [
"OBJECTIVE = \"Write a weather report for SF today\""
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "8a8e5543",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "3d69899b",
"metadata": {},
"outputs": [],
"source": [
"# Logging of LLMChains\n",
"verbose = False\n",
"# If None, will keep on going forever\n",
"max_iterations: Optional[int] = 3\n",
"baby_agi = BabyAGI.from_llm(\n",
" llm=llm, vectorstore=vectorstore, verbose=verbose, max_iterations=max_iterations\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "f7957b51",
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[95m\u001b[1m\n",
"*****TASK LIST*****\n",
"\u001b[0m\u001b[0m\n",
"1: Make a todo list\n",
"\u001b[92m\u001b[1m\n",
"*****NEXT TASK*****\n",
"\u001b[0m\u001b[0m\n",
"1: Make a todo list\n",
"\u001b[93m\u001b[1m\n",
"*****TASK RESULT*****\n",
"\u001b[0m\u001b[0m\n",
"\n",
"\n",
"1. Check the weather forecast for San Francisco today\n",
"2. Make note of the temperature, humidity, wind speed, and other relevant weather conditions\n",
"3. Write a weather report summarizing the forecast\n",
"4. Check for any weather alerts or warnings\n",
"5. Share the report with the relevant stakeholders\n",
"\u001b[95m\u001b[1m\n",
"*****TASK LIST*****\n",
"\u001b[0m\u001b[0m\n",
"2: Check the current temperature in San Francisco\n",
"3: Check the current humidity in San Francisco\n",
"4: Check the current wind speed in San Francisco\n",
"5: Check for any weather alerts or warnings in San Francisco\n",
"6: Check the forecast for the next 24 hours in San Francisco\n",
"7: Check the forecast for the next 48 hours in San Francisco\n",
"8: Check the forecast for the next 72 hours in San Francisco\n",
"9: Check the forecast for the next week in San Francisco\n",
"10: Check the forecast for the next month in San Francisco\n",
"11: Check the forecast for the next 3 months in San Francisco\n",
"1: Write a weather report for SF today\n",
"\u001b[92m\u001b[1m\n",
"*****NEXT TASK*****\n",
"\u001b[0m\u001b[0m\n",
"2: Check the current temperature in San Francisco\n",
"\u001b[93m\u001b[1m\n",
"*****TASK RESULT*****\n",
"\u001b[0m\u001b[0m\n",
"\n",
"\n",
"I will check the current temperature in San Francisco. I will use an online weather service to get the most up-to-date information.\n",
"\u001b[95m\u001b[1m\n",
"*****TASK LIST*****\n",
"\u001b[0m\u001b[0m\n",
"3: Check the current UV index in San Francisco.\n",
"4: Check the current air quality in San Francisco.\n",
"5: Check the current precipitation levels in San Francisco.\n",
"6: Check the current cloud cover in San Francisco.\n",
"7: Check the current barometric pressure in San Francisco.\n",
"8: Check the current dew point in San Francisco.\n",
"9: Check the current wind direction in San Francisco.\n",
"10: Check the current humidity levels in San Francisco.\n",
"1: Check the current temperature in San Francisco to the average temperature for this time of year.\n",
"2: Check the current visibility in San Francisco.\n",
"11: Write a weather report for SF today.\n",
"\u001b[92m\u001b[1m\n",
"*****NEXT TASK*****\n",
"\u001b[0m\u001b[0m\n",
"3: Check the current UV index in San Francisco.\n",
"\u001b[93m\u001b[1m\n",
"*****TASK RESULT*****\n",
"\u001b[0m\u001b[0m\n",
"\n",
"\n",
"The current UV index in San Francisco is moderate. The UV index is expected to remain at moderate levels throughout the day. It is recommended to wear sunscreen and protective clothing when outdoors.\n",
"\u001b[91m\u001b[1m\n",
"*****TASK ENDING*****\n",
"\u001b[0m\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"{'objective': 'Write a weather report for SF today'}"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"baby_agi({\"objective\": OBJECTIVE})"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "898a210b",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

@ -0,0 +1,387 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "517a9fd4",
"metadata": {},
"source": [
"# BabyAGI with Tools\n",
"\n",
"This notebook builds on top of [baby agi](baby_agi.ipynb), but shows how you can swap out the execution chain. The previous execution chain was just an LLM which made stuff up. By swapping it out with an agent that has access to tools, we can hopefully get real reliable information"
]
},
{
"cell_type": "markdown",
"id": "556af556",
"metadata": {},
"source": [
"## Install and Import Required Modules"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "c8a354b6",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from collections import deque\n",
"from typing import Dict, List, Optional, Any\n",
"\n",
"from langchain import LLMChain, OpenAI, PromptTemplate\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.llms import BaseLLM\n",
"from langchain.vectorstores.base import VectorStore\n",
"from pydantic import BaseModel, Field\n",
"from langchain.chains.base import Chain\n",
"from langchain.experimental import BabyAGI"
]
},
{
"cell_type": "markdown",
"id": "09f70772",
"metadata": {},
"source": [
"## Connect to the Vector Store\n",
"\n",
"Depending on what vectorstore you use, this step may look different."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "794045d4",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install faiss-cpu > /dev/null\n",
"%pip install google-search-results > /dev/null\n",
"from langchain.vectorstores import FAISS\n",
"from langchain.docstore import InMemoryDocstore"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6e0305eb",
"metadata": {},
"outputs": [],
"source": [
"# Define your embedding model\n",
"embeddings_model = OpenAIEmbeddings()\n",
"# Initialize the vectorstore as empty\n",
"import faiss\n",
"\n",
"embedding_size = 1536\n",
"index = faiss.IndexFlatL2(embedding_size)\n",
"vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})"
]
},
{
"cell_type": "markdown",
"id": "0f3b72bf",
"metadata": {},
"source": [
"## Define the Chains\n",
"\n",
"BabyAGI relies on three LLM chains:\n",
"- Task creation chain to select new tasks to add to the list\n",
"- Task prioritization chain to re-prioritize tasks\n",
"- Execution Chain to execute the tasks\n",
"\n",
"\n",
"NOTE: in this notebook, the Execution chain will now be an agent."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "b43cd580",
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import ZeroShotAgent, Tool, AgentExecutor\n",
"from langchain import OpenAI, SerpAPIWrapper, LLMChain\n",
"\n",
"todo_prompt = PromptTemplate.from_template(\n",
" \"You are a planner who is an expert at coming up with a todo list for a given objective. Come up with a todo list for this objective: {objective}\"\n",
")\n",
"todo_chain = LLMChain(llm=OpenAI(temperature=0), prompt=todo_prompt)\n",
"search = SerpAPIWrapper()\n",
"tools = [\n",
" Tool(\n",
" name=\"Search\",\n",
" func=search.run,\n",
" description=\"useful for when you need to answer questions about current events\",\n",
" ),\n",
" Tool(\n",
" name=\"TODO\",\n",
" func=todo_chain.run,\n",
" description=\"useful for when you need to come up with todo lists. Input: an objective to create a todo list for. Output: a todo list for that objective. Please be very clear what the objective is!\",\n",
" ),\n",
"]\n",
"\n",
"\n",
"prefix = \"\"\"You are an AI who performs one task based on the following objective: {objective}. Take into account these previously completed tasks: {context}.\"\"\"\n",
"suffix = \"\"\"Question: {task}\n",
"{agent_scratchpad}\"\"\"\n",
"prompt = ZeroShotAgent.create_prompt(\n",
" tools,\n",
" prefix=prefix,\n",
" suffix=suffix,\n",
" input_variables=[\"objective\", \"task\", \"context\", \"agent_scratchpad\"],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "4b00ae2e",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)\n",
"llm_chain = LLMChain(llm=llm, prompt=prompt)\n",
"tool_names = [tool.name for tool in tools]\n",
"agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names)\n",
"agent_executor = AgentExecutor.from_agent_and_tools(\n",
" agent=agent, tools=tools, verbose=True\n",
")"
]
},
{
"cell_type": "markdown",
"id": "05ba762e",
"metadata": {},
"source": [
"### Run the BabyAGI\n",
"\n",
"Now it's time to create the BabyAGI controller and watch it try to accomplish your objective."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "3d220b69",
"metadata": {},
"outputs": [],
"source": [
"OBJECTIVE = \"Write a weather report for SF today\""
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "3d69899b",
"metadata": {},
"outputs": [],
"source": [
"# Logging of LLMChains\n",
"verbose = False\n",
"# If None, will keep on going forever\n",
"max_iterations: Optional[int] = 3\n",
"baby_agi = BabyAGI.from_llm(\n",
" llm=llm, vectorstore=vectorstore, task_execution_chain=agent_executor, verbose=verbose, max_iterations=max_iterations\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "f7957b51",
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[95m\u001b[1m\n",
"*****TASK LIST*****\n",
"\u001b[0m\u001b[0m\n",
"1: Make a todo list\n",
"\u001b[92m\u001b[1m\n",
"*****NEXT TASK*****\n",
"\u001b[0m\u001b[0m\n",
"1: Make a todo list\n",
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: I need to come up with a todo list\n",
"Action: TODO\n",
"Action Input: Write a weather report for SF today\u001b[0m\u001b[33;1m\u001b[1;3m\n",
"\n",
"1. Research current weather conditions in San Francisco\n",
"2. Gather data on temperature, humidity, wind speed, and other relevant weather conditions\n",
"3. Analyze data to determine current weather trends\n",
"4. Write a brief introduction to the weather report\n",
"5. Describe current weather conditions in San Francisco\n",
"6. Discuss any upcoming weather changes\n",
"7. Summarize the weather report\n",
"8. Proofread and edit the report\n",
"9. Submit the report\u001b[0m\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: The todo list for writing a weather report for SF today is: 1. Research current weather conditions in San Francisco; 2. Gather data on temperature, humidity, wind speed, and other relevant weather conditions; 3. Analyze data to determine current weather trends; 4. Write a brief introduction to the weather report; 5. Describe current weather conditions in San Francisco; 6. Discuss any upcoming weather changes; 7. Summarize the weather report; 8. Proofread and edit the report; 9. Submit the report.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\u001b[93m\u001b[1m\n",
"*****TASK RESULT*****\n",
"\u001b[0m\u001b[0m\n",
"The todo list for writing a weather report for SF today is: 1. Research current weather conditions in San Francisco; 2. Gather data on temperature, humidity, wind speed, and other relevant weather conditions; 3. Analyze data to determine current weather trends; 4. Write a brief introduction to the weather report; 5. Describe current weather conditions in San Francisco; 6. Discuss any upcoming weather changes; 7. Summarize the weather report; 8. Proofread and edit the report; 9. Submit the report.\n",
"\u001b[95m\u001b[1m\n",
"*****TASK LIST*****\n",
"\u001b[0m\u001b[0m\n",
"2: Gather data on precipitation, cloud cover, and other relevant weather conditions;\n",
"3: Analyze data to determine any upcoming weather changes;\n",
"4: Research current weather forecasts for San Francisco;\n",
"5: Create a visual representation of the weather report;\n",
"6: Include relevant images and graphics in the report;\n",
"7: Format the report for readability;\n",
"8: Publish the report online;\n",
"9: Monitor the report for accuracy.\n",
"\u001b[92m\u001b[1m\n",
"*****NEXT TASK*****\n",
"\u001b[0m\u001b[0m\n",
"2: Gather data on precipitation, cloud cover, and other relevant weather conditions;\n",
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: I need to search for current weather conditions in San Francisco\n",
"Action: Search\n",
"Action Input: Current weather conditions in San Francisco\u001b[0m\u001b[36;1m\u001b[1;3mCurrent Weather for Popular Cities ; San Francisco, CA 46 · Partly Cloudy ; Manhattan, NY warning 52 · Cloudy ; Schiller Park, IL (60176) 40 · Sunny ; Boston, MA 54 ...\u001b[0m\u001b[32;1m\u001b[1;3m I need to compile the data into a weather report\n",
"Action: TODO\n",
"Action Input: Compile data into a weather report\u001b[0m\u001b[33;1m\u001b[1;3m\n",
"\n",
"1. Gather data from reliable sources such as the National Weather Service, local weather stations, and other meteorological organizations.\n",
"\n",
"2. Analyze the data to identify trends and patterns.\n",
"\n",
"3. Create a chart or graph to visualize the data.\n",
"\n",
"4. Write a summary of the data and its implications.\n",
"\n",
"5. Compile the data into a report format.\n",
"\n",
"6. Proofread the report for accuracy and clarity.\n",
"\n",
"7. Publish the report to a website or other platform.\n",
"\n",
"8. Distribute the report to relevant stakeholders.\u001b[0m\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: Today in San Francisco, the temperature is 46 degrees Fahrenheit with partly cloudy skies. The forecast for the rest of the day is expected to remain partly cloudy.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\u001b[93m\u001b[1m\n",
"*****TASK RESULT*****\n",
"\u001b[0m\u001b[0m\n",
"Today in San Francisco, the temperature is 46 degrees Fahrenheit with partly cloudy skies. The forecast for the rest of the day is expected to remain partly cloudy.\n",
"\u001b[95m\u001b[1m\n",
"*****TASK LIST*****\n",
"\u001b[0m\u001b[0m\n",
"3: Format the report for readability;\n",
"4: Include relevant images and graphics in the report;\n",
"5: Compare the current weather conditions in San Francisco to the forecasted conditions;\n",
"6: Identify any potential weather-related hazards in the area;\n",
"7: Research historical weather patterns in San Francisco;\n",
"8: Identify any potential trends in the weather data;\n",
"9: Include relevant data sources in the report;\n",
"10: Summarize the weather report in a concise manner;\n",
"11: Include a summary of the forecasted weather conditions;\n",
"12: Include a summary of the current weather conditions;\n",
"13: Include a summary of the historical weather patterns;\n",
"14: Include a summary of the potential weather-related hazards;\n",
"15: Include a summary of the potential trends in the weather data;\n",
"16: Include a summary of the data sources used in the report;\n",
"17: Analyze data to determine any upcoming weather changes;\n",
"18: Research current weather forecasts for San Francisco;\n",
"19: Create a visual representation of the weather report;\n",
"20: Publish the report online;\n",
"21: Monitor the report for accuracy\n",
"\u001b[92m\u001b[1m\n",
"*****NEXT TASK*****\n",
"\u001b[0m\u001b[0m\n",
"3: Format the report for readability;\n",
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: I need to make sure the report is easy to read;\n",
"Action: TODO\n",
"Action Input: Make the report easy to read\u001b[0m\u001b[33;1m\u001b[1;3m\n",
"\n",
"1. Break up the report into sections with clear headings\n",
"2. Use bullet points and numbered lists to organize information\n",
"3. Use short, concise sentences\n",
"4. Use simple language and avoid jargon\n",
"5. Include visuals such as charts, graphs, and diagrams to illustrate points\n",
"6. Use bold and italicized text to emphasize key points\n",
"7. Include a table of contents and page numbers\n",
"8. Use a consistent font and font size throughout the report\n",
"9. Include a summary at the end of the report\n",
"10. Proofread the report for typos and errors\u001b[0m\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: The report should be formatted for readability by breaking it up into sections with clear headings, using bullet points and numbered lists to organize information, using short, concise sentences, using simple language and avoiding jargon, including visuals such as charts, graphs, and diagrams to illustrate points, using bold and italicized text to emphasize key points, including a table of contents and page numbers, using a consistent font and font size throughout the report, including a summary at the end of the report, and proofreading the report for typos and errors.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\u001b[93m\u001b[1m\n",
"*****TASK RESULT*****\n",
"\u001b[0m\u001b[0m\n",
"The report should be formatted for readability by breaking it up into sections with clear headings, using bullet points and numbered lists to organize information, using short, concise sentences, using simple language and avoiding jargon, including visuals such as charts, graphs, and diagrams to illustrate points, using bold and italicized text to emphasize key points, including a table of contents and page numbers, using a consistent font and font size throughout the report, including a summary at the end of the report, and proofreading the report for typos and errors.\n",
"\u001b[91m\u001b[1m\n",
"*****TASK ENDING*****\n",
"\u001b[0m\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"{'objective': 'Write a weather report for SF today'}"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"baby_agi({\"objective\": OBJECTIVE})"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "898a210b",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

@ -19,8 +19,4 @@ Highlighting specific parts:
Specific examples of this include:
- [Baby AGI](agents/baby_agi.ipynb): a notebook implementing [BabyAGI](https://github.com/yoheinakajima/babyagi) by Yohei Nakajima as LLM Chains
- [Baby AGI with Tools](agents/baby_agi_with_agent.ipynb): building off the above notebook, this example substitutes in an agent with tools as the execution tools, allowing it to actually take actions.
- [CAMEL](agents/camel_role_playing.ipynb): an implementation of the CAMEL (Communicative Agents for “Mind” Exploration of Large Scale Language Model Society) paper, where two agents communicate with eachother.
- [AI Plugins](agents/custom_agent_with_plugin_retrieval.ipynb): an implementation of an agent that is designed to be able to use all AI Plugins.
- [Generative Agents](agents/characters.ipynb): This notebook implements a generative agent based on the paper [Generative Agents: Interactive Simulacra of Human Behavior](https://arxiv.org/abs/2304.03442) by Park, et. al.

@ -16,6 +16,16 @@ class Tool(BaseTool):
coroutine: Optional[Callable[..., Awaitable[str]]] = None
"""The asynchronous version of the function."""
@property
def args(self) -> dict:
if self.args_schema is not None:
return self.args_schema.schema()["properties"]
else:
inferred_model = validate_arguments(self.func).model # type: ignore
schema = inferred_model.schema()["properties"]
valid_keys = signature(self.func).parameters
return {k: schema[k] for k in valid_keys}
def _run(self, *args: Any, **kwargs: Any) -> str:
"""Use the tool."""
return self.func(*args, **kwargs)

@ -0,0 +1,3 @@
from langchain.experimental.autonomous_agents.baby_agi.baby_agi import BabyAGI
__all__ = ["BabyAGI"]

@ -0,0 +1,3 @@
from langchain.experimental.autonomous_agents.baby_agi.baby_agi import BabyAGI
__all__ = ["BabyAGI"]

@ -0,0 +1,135 @@
from __future__ import annotations
from typing import List, Optional
from pydantic import ValidationError
from langchain.chains.llm import LLMChain
from langchain.chat_models.base import BaseChatModel
from langchain.experimental.autonomous_agents.autogpt.output_parser import (
AutoGPTOutputParser,
BaseAutoGPTOutputParser,
)
from langchain.experimental.autonomous_agents.autogpt.prompt import AutoGPTPrompt
from langchain.experimental.autonomous_agents.autogpt.prompt_generator import (
FINISH_NAME,
)
from langchain.schema import (
AIMessage,
BaseMessage,
Document,
HumanMessage,
SystemMessage,
)
from langchain.tools.base import BaseTool
from langchain.tools.human.tool import HumanInputRun
from langchain.vectorstores.base import VectorStoreRetriever
class AutoGPT:
"""Agent class for interacting with Auto-GPT."""
def __init__(
self,
ai_name: str,
memory: VectorStoreRetriever,
chain: LLMChain,
output_parser: BaseAutoGPTOutputParser,
tools: List[BaseTool],
feedback_tool: Optional[HumanInputRun] = None,
):
self.ai_name = ai_name
self.memory = memory
self.full_message_history: List[BaseMessage] = []
self.next_action_count = 0
self.chain = chain
self.output_parser = output_parser
self.tools = tools
self.feedback_tool = feedback_tool
@classmethod
def from_llm_and_tools(
cls,
ai_name: str,
ai_role: str,
memory: VectorStoreRetriever,
tools: List[BaseTool],
llm: BaseChatModel,
human_in_the_loop: bool = False,
output_parser: Optional[BaseAutoGPTOutputParser] = None,
) -> AutoGPT:
prompt = AutoGPTPrompt(
ai_name=ai_name,
ai_role=ai_role,
tools=tools,
input_variables=["memory", "messages", "goals", "user_input"],
token_counter=llm.get_num_tokens,
)
human_feedback_tool = HumanInputRun() if human_in_the_loop else None
chain = LLMChain(llm=llm, prompt=prompt)
return cls(
ai_name,
memory,
chain,
output_parser or AutoGPTOutputParser(),
tools,
feedback_tool=human_feedback_tool,
)
def run(self, goals: List[str]) -> str:
user_input = (
"Determine which next command to use, "
"and respond using the format specified above:"
)
# Interaction Loop
loop_count = 0
while True:
# Discontinue if continuous limit is reached
loop_count += 1
# Send message to AI, get response
assistant_reply = self.chain.run(
goals=goals,
messages=self.full_message_history,
memory=self.memory,
user_input=user_input,
)
# Print Assistant thoughts
print(assistant_reply)
self.full_message_history.append(HumanMessage(content=user_input))
self.full_message_history.append(AIMessage(content=assistant_reply))
# Get command name and arguments
action = self.output_parser.parse(assistant_reply)
tools = {t.name: t for t in self.tools}
if action.name == FINISH_NAME:
return action.args["response"]
if action.name in tools:
tool = tools[action.name]
try:
observation = tool.run(action.args)
except ValidationError as e:
observation = f"Error in args: {str(e)}"
result = f"Command {tool.name} returned: {observation}"
elif action.name == "ERROR":
result = f"Error: {action.args}. "
else:
result = (
f"Unknown command '{action.name}'. "
f"Please refer to the 'COMMANDS' list for available "
f"commands and only respond in the specified JSON format."
)
memory_to_add = (
f"Assistant Reply: {assistant_reply} " f"\nResult: {result} "
)
if self.feedback_tool is not None:
feedback = f"\n{self.feedback_tool.run('Input: ')}"
if feedback in {"q", "stop"}:
print("EXITING")
return "EXITING"
memory_to_add += feedback
self.memory.add_documents([Document(page_content=memory_to_add)])
self.full_message_history.append(SystemMessage(content=result))

@ -0,0 +1,30 @@
from typing import Any, Dict, List
from pydantic import Field
from langchain.memory.chat_memory import BaseChatMemory, get_prompt_input_key
from langchain.vectorstores.base import VectorStoreRetriever
class AutoGPTMemory(BaseChatMemory):
retriever: VectorStoreRetriever = Field(exclude=True)
"""VectorStoreRetriever object to connect to."""
@property
def memory_variables(self) -> List[str]:
return ["chat_history", "relevant_context"]
def _get_prompt_input_key(self, inputs: Dict[str, Any]) -> str:
"""Get the input key for the prompt."""
if self.input_key is None:
return get_prompt_input_key(inputs, self.memory_variables)
return self.input_key
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
input_key = self._get_prompt_input_key(inputs)
query = inputs[input_key]
docs = self.retriever.get_relevant_documents(query)
return {
"chat_history": self.chat_memory.messages[-10:],
"relevant_context": docs,
}

@ -0,0 +1,50 @@
import json
import re
from abc import abstractmethod
from typing import Dict, NamedTuple
from langchain.schema import BaseOutputParser
class AutoGPTAction(NamedTuple):
name: str
args: Dict
class BaseAutoGPTOutputParser(BaseOutputParser):
@abstractmethod
def parse(self, text: str) -> AutoGPTAction:
"""Return AutoGPTAction"""
def preprocess_json_input(input_str: str) -> str:
# Replace single backslashes with double backslashes,
# while leaving already escaped ones intact
corrected_str = re.sub(
r'(?<!\\)\\(?!["\\/bfnrt]|u[0-9a-fA-F]{4})', r"\\\\", input_str
)
return corrected_str
class AutoGPTOutputParser(BaseAutoGPTOutputParser):
def parse(self, text: str) -> AutoGPTAction:
try:
parsed = json.loads(text, strict=False)
except json.JSONDecodeError:
preprocessed_text = preprocess_json_input(text)
try:
parsed = json.loads(preprocessed_text, strict=False)
except Exception:
return AutoGPTAction(
name="ERROR",
args={"error": f"Could not parse invalid json: {text}"},
)
try:
return AutoGPTAction(
name=parsed["command"]["name"],
args=parsed["command"]["args"],
)
except KeyError:
return AutoGPTAction(
name="ERROR", args={"error": f"Incomplete command args: {parsed}"}
)

@ -0,0 +1,75 @@
import time
from typing import Any, Callable, List
from pydantic import BaseModel
from langchain.experimental.autonomous_agents.autogpt.prompt_generator import get_prompt
from langchain.prompts.chat import (
BaseChatPromptTemplate,
)
from langchain.schema import BaseMessage, HumanMessage, SystemMessage
from langchain.tools.base import BaseTool
from langchain.vectorstores.base import VectorStoreRetriever
class AutoGPTPrompt(BaseChatPromptTemplate, BaseModel):
ai_name: str
ai_role: str
tools: List[BaseTool]
token_counter: Callable[[str], int]
send_token_limit: int = 4196
def construct_full_prompt(self, goals: List[str]) -> str:
prompt_start = """Your decisions must always be made independently
without seeking user assistance. Play to your strengths
as an LLM and pursue simple strategies with no legal complications.
If you have completed all your tasks,
make sure to use the "finish" command."""
# Construct full prompt
full_prompt = (
f"You are {self.ai_name}, {self.ai_role}\n{prompt_start}\n\nGOALS:\n\n"
)
for i, goal in enumerate(goals):
full_prompt += f"{i+1}. {goal}\n"
full_prompt += f"\n\n{get_prompt(self.tools)}"
return full_prompt
def format_messages(self, **kwargs: Any) -> List[BaseMessage]:
base_prompt = SystemMessage(content=self.construct_full_prompt(kwargs["goals"]))
time_prompt = SystemMessage(
content=f"The current time and date is {time.strftime('%c')}"
)
used_tokens = self.token_counter(base_prompt.content) + self.token_counter(
time_prompt.content
)
memory: VectorStoreRetriever = kwargs["memory"]
previous_messages = kwargs["messages"]
relevant_docs = memory.get_relevant_documents(str(previous_messages[-10:]))
relevant_memory = [d.page_content for d in relevant_docs]
relevant_memory_tokens = sum(
[self.token_counter(doc) for doc in relevant_memory]
)
while used_tokens + relevant_memory_tokens > 2500:
relevant_memory = relevant_memory[:-1]
relevant_memory_tokens = sum(
[self.token_counter(doc) for doc in relevant_memory]
)
content_format = (
f"This reminds you of these events "
f"from your past:\n{relevant_memory}\n\n"
)
memory_message = SystemMessage(content=content_format)
used_tokens += len(memory_message.content)
historical_messages: List[BaseMessage] = []
for message in previous_messages[-10:][::-1]:
message_tokens = self.token_counter(message.content)
if used_tokens + message_tokens > self.send_token_limit - 1000:
break
historical_messages = [message] + historical_messages
input_message = HumanMessage(content=kwargs["user_input"])
messages: List[BaseMessage] = [base_prompt, time_prompt, memory_message]
messages += historical_messages
messages.append(input_message)
return messages

@ -0,0 +1,186 @@
import json
from typing import List
from langchain.tools.base import BaseTool
FINISH_NAME = "finish"
class PromptGenerator:
"""A class for generating custom prompt strings.
Does this based on constraints, commands, resources, and performance evaluations.
"""
def __init__(self) -> None:
"""Initialize the PromptGenerator object.
Starts with empty lists of constraints, commands, resources,
and performance evaluations.
"""
self.constraints: List[str] = []
self.commands: List[BaseTool] = []
self.resources: List[str] = []
self.performance_evaluation: List[str] = []
self.response_format = {
"thoughts": {
"text": "thought",
"reasoning": "reasoning",
"plan": "- short bulleted\n- list that conveys\n- long-term plan",
"criticism": "constructive self-criticism",
"speak": "thoughts summary to say to user",
},
"command": {"name": "command name", "args": {"arg name": "value"}},
}
def add_constraint(self, constraint: str) -> None:
"""
Add a constraint to the constraints list.
Args:
constraint (str): The constraint to be added.
"""
self.constraints.append(constraint)
def add_tool(self, tool: BaseTool) -> None:
self.commands.append(tool)
def _generate_command_string(self, tool: BaseTool) -> str:
output = f"{tool.name}: {tool.description}"
output += f", args json schema: {json.dumps(tool.args)}"
return output
def add_resource(self, resource: str) -> None:
"""
Add a resource to the resources list.
Args:
resource (str): The resource to be added.
"""
self.resources.append(resource)
def add_performance_evaluation(self, evaluation: str) -> None:
"""
Add a performance evaluation item to the performance_evaluation list.
Args:
evaluation (str): The evaluation item to be added.
"""
self.performance_evaluation.append(evaluation)
def _generate_numbered_list(self, items: list, item_type: str = "list") -> str:
"""
Generate a numbered list from given items based on the item_type.
Args:
items (list): A list of items to be numbered.
item_type (str, optional): The type of items in the list.
Defaults to 'list'.
Returns:
str: The formatted numbered list.
"""
if item_type == "command":
command_strings = [
f"{i + 1}. {self._generate_command_string(item)}"
for i, item in enumerate(items)
]
finish_description = (
"use this to signal that you have finished all your objectives"
)
finish_args = (
'"response": "final response to let '
'people know you have finished your objectives"'
)
finish_string = (
f"{len(items) + 1}. {FINISH_NAME}: "
f"{finish_description}, args: {finish_args}"
)
return "\n".join(command_strings + [finish_string])
else:
return "\n".join(f"{i+1}. {item}" for i, item in enumerate(items))
def generate_prompt_string(self) -> str:
"""Generate a prompt string.
Returns:
str: The generated prompt string.
"""
formatted_response_format = json.dumps(self.response_format, indent=4)
prompt_string = (
f"Constraints:\n{self._generate_numbered_list(self.constraints)}\n\n"
f"Commands:\n"
f"{self._generate_numbered_list(self.commands, item_type='command')}\n\n"
f"Resources:\n{self._generate_numbered_list(self.resources)}\n\n"
f"Performance Evaluation:\n"
f"{self._generate_numbered_list(self.performance_evaluation)}\n\n"
f"You should only respond in JSON format as described below "
f"\nResponse Format: \n{formatted_response_format} "
f"\nEnsure the response can be parsed by Python json.loads"
)
return prompt_string
def get_prompt(tools: List[BaseTool]) -> str:
"""This function generates a prompt string.
It includes various constraints, commands, resources, and performance evaluations.
Returns:
str: The generated prompt string.
"""
# Initialize the PromptGenerator object
prompt_generator = PromptGenerator()
# Add constraints to the PromptGenerator object
prompt_generator.add_constraint(
"~4000 word limit for short term memory. "
"Your short term memory is short, "
"so immediately save important information to files."
)
prompt_generator.add_constraint(
"If you are unsure how you previously did something "
"or want to recall past events, "
"thinking about similar events will help you remember."
)
prompt_generator.add_constraint("No user assistance")
prompt_generator.add_constraint(
'Exclusively use the commands listed in double quotes e.g. "command name"'
)
# Add commands to the PromptGenerator object
for tool in tools:
prompt_generator.add_tool(tool)
# Add resources to the PromptGenerator object
prompt_generator.add_resource(
"Internet access for searches and information gathering."
)
prompt_generator.add_resource("Long Term memory management.")
prompt_generator.add_resource(
"GPT-3.5 powered Agents for delegation of simple tasks."
)
prompt_generator.add_resource("File output.")
# Add performance evaluations to the PromptGenerator object
prompt_generator.add_performance_evaluation(
"Continuously review and analyze your actions "
"to ensure you are performing to the best of your abilities."
)
prompt_generator.add_performance_evaluation(
"Constructively self-criticize your big-picture behavior constantly."
)
prompt_generator.add_performance_evaluation(
"Reflect on past decisions and strategies to refine your approach."
)
prompt_generator.add_performance_evaluation(
"Every command has a cost, so be smart and efficient. "
"Aim to complete tasks in the least number of steps."
)
# Generate the prompt string
prompt_string = prompt_generator.generate_prompt_string()
return prompt_string

@ -0,0 +1,17 @@
from langchain.experimental.autonomous_agents.baby_agi.baby_agi import BabyAGI
from langchain.experimental.autonomous_agents.baby_agi.task_creation import (
TaskCreationChain,
)
from langchain.experimental.autonomous_agents.baby_agi.task_execution import (
TaskExecutionChain,
)
from langchain.experimental.autonomous_agents.baby_agi.task_prioritization import (
TaskPrioritizationChain,
)
__all__ = [
"BabyAGI",
"TaskPrioritizationChain",
"TaskExecutionChain",
"TaskCreationChain",
]

@ -0,0 +1,181 @@
from collections import deque
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Field
from langchain.chains.base import Chain
from langchain.experimental.autonomous_agents.baby_agi.task_creation import (
TaskCreationChain,
)
from langchain.experimental.autonomous_agents.baby_agi.task_execution import (
TaskExecutionChain,
)
from langchain.experimental.autonomous_agents.baby_agi.task_prioritization import (
TaskPrioritizationChain,
)
from langchain.schema import BaseLanguageModel
from langchain.vectorstores.base import VectorStore
class BabyAGI(Chain, BaseModel):
"""Controller model for the BabyAGI agent."""
task_list: deque = Field(default_factory=deque)
task_creation_chain: Chain = Field(...)
task_prioritization_chain: Chain = Field(...)
execution_chain: Chain = Field(...)
task_id_counter: int = Field(1)
vectorstore: VectorStore = Field(init=False)
max_iterations: Optional[int] = None
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def add_task(self, task: Dict) -> None:
self.task_list.append(task)
def print_task_list(self) -> None:
print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m")
for t in self.task_list:
print(str(t["task_id"]) + ": " + t["task_name"])
def print_next_task(self, task: Dict) -> None:
print("\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m")
print(str(task["task_id"]) + ": " + task["task_name"])
def print_task_result(self, result: str) -> None:
print("\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m")
print(result)
@property
def input_keys(self) -> List[str]:
return ["objective"]
@property
def output_keys(self) -> List[str]:
return []
def get_next_task(
self, result: str, task_description: str, objective: str
) -> List[Dict]:
"""Get the next task."""
task_names = [t["task_name"] for t in self.task_list]
incomplete_tasks = ", ".join(task_names)
response = self.task_creation_chain.run(
result=result,
task_description=task_description,
incomplete_tasks=incomplete_tasks,
objective=objective,
)
new_tasks = response.split("\n")
return [
{"task_name": task_name} for task_name in new_tasks if task_name.strip()
]
def prioritize_tasks(self, this_task_id: int, objective: str) -> List[Dict]:
"""Prioritize tasks."""
task_names = [t["task_name"] for t in list(self.task_list)]
next_task_id = int(this_task_id) + 1
response = self.task_prioritization_chain.run(
task_names=", ".join(task_names),
next_task_id=str(next_task_id),
objective=objective,
)
new_tasks = response.split("\n")
prioritized_task_list = []
for task_string in new_tasks:
if not task_string.strip():
continue
task_parts = task_string.strip().split(".", 1)
if len(task_parts) == 2:
task_id = task_parts[0].strip()
task_name = task_parts[1].strip()
prioritized_task_list.append(
{"task_id": task_id, "task_name": task_name}
)
return prioritized_task_list
def _get_top_tasks(self, query: str, k: int) -> List[str]:
"""Get the top k tasks based on the query."""
results = self.vectorstore.similarity_search(query, k=k)
if not results:
return []
return [str(item.metadata["task"]) for item in results]
def execute_task(self, objective: str, task: str, k: int = 5) -> str:
"""Execute a task."""
context = self._get_top_tasks(query=objective, k=k)
return self.execution_chain.run(
objective=objective, context="\n".join(context), task=task
)
def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
"""Run the agent."""
objective = inputs["objective"]
first_task = inputs.get("first_task", "Make a todo list")
self.add_task({"task_id": 1, "task_name": first_task})
num_iters = 0
while True:
if self.task_list:
self.print_task_list()
# Step 1: Pull the first task
task = self.task_list.popleft()
self.print_next_task(task)
# Step 2: Execute the task
result = self.execute_task(objective, task["task_name"])
this_task_id = int(task["task_id"])
self.print_task_result(result)
# Step 3: Store the result in Pinecone
result_id = f"result_{task['task_id']}"
self.vectorstore.add_texts(
texts=[result],
metadatas=[{"task": task["task_name"]}],
ids=[result_id],
)
# Step 4: Create new tasks and reprioritize task list
new_tasks = self.get_next_task(result, task["task_name"], objective)
for new_task in new_tasks:
self.task_id_counter += 1
new_task.update({"task_id": self.task_id_counter})
self.add_task(new_task)
self.task_list = deque(self.prioritize_tasks(this_task_id, objective))
num_iters += 1
if self.max_iterations is not None and num_iters == self.max_iterations:
print(
"\033[91m\033[1m" + "\n*****TASK ENDING*****\n" + "\033[0m\033[0m"
)
break
return {}
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
vectorstore: VectorStore,
verbose: bool = False,
task_execution_chain: Optional[Chain] = None,
**kwargs: Dict[str, Any],
) -> "BabyAGI":
"""Initialize the BabyAGI Controller."""
task_creation_chain = TaskCreationChain.from_llm(llm, verbose=verbose)
task_prioritization_chain = TaskPrioritizationChain.from_llm(
llm, verbose=verbose
)
if task_execution_chain is None:
execution_chain: Chain = TaskExecutionChain.from_llm(llm, verbose=verbose)
else:
execution_chain = task_execution_chain
return cls(
task_creation_chain=task_creation_chain,
task_prioritization_chain=task_prioritization_chain,
execution_chain=execution_chain,
vectorstore=vectorstore,
**kwargs,
)

@ -0,0 +1,30 @@
from langchain import LLMChain, PromptTemplate
from langchain.schema import BaseLanguageModel
class TaskCreationChain(LLMChain):
"""Chain to generates tasks."""
@classmethod
def from_llm(cls, llm: BaseLanguageModel, verbose: bool = True) -> LLMChain:
"""Get the response parser."""
task_creation_template = (
"You are an task creation AI that uses the result of an execution agent"
" to create new tasks with the following objective: {objective},"
" The last completed task has the result: {result}."
" This result was based on this task description: {task_description}."
" These are incomplete tasks: {incomplete_tasks}."
" Based on the result, create new tasks to be completed"
" by the AI system that do not overlap with incomplete tasks."
" Return the tasks as an array."
)
prompt = PromptTemplate(
template=task_creation_template,
input_variables=[
"result",
"task_description",
"incomplete_tasks",
"objective",
],
)
return cls(prompt=prompt, llm=llm, verbose=verbose)

@ -0,0 +1,21 @@
from langchain import LLMChain, PromptTemplate
from langchain.schema import BaseLanguageModel
class TaskExecutionChain(LLMChain):
"""Chain to execute tasks."""
@classmethod
def from_llm(cls, llm: BaseLanguageModel, verbose: bool = True) -> LLMChain:
"""Get the response parser."""
execution_template = (
"You are an AI who performs one task based on the following objective: "
"{objective}."
"Take into account these previously completed tasks: {context}."
" Your task: {task}. Response:"
)
prompt = PromptTemplate(
template=execution_template,
input_variables=["objective", "context", "task"],
)
return cls(prompt=prompt, llm=llm, verbose=verbose)

@ -0,0 +1,24 @@
from langchain import LLMChain, PromptTemplate
from langchain.schema import BaseLanguageModel
class TaskPrioritizationChain(LLMChain):
"""Chain to prioritize tasks."""
@classmethod
def from_llm(cls, llm: BaseLanguageModel, verbose: bool = True) -> LLMChain:
"""Get the response parser."""
task_prioritization_template = (
"You are a task prioritization AI tasked with cleaning the formatting of "
"and reprioritizing the following tasks: {task_names}."
" Consider the ultimate objective of your team: {objective}."
" Do not remove any tasks. Return the result as a numbered list, like:"
" #. First task"
" #. Second task"
" Start the task list with number {next_task_id}."
)
prompt = PromptTemplate(
template=task_prioritization_template,
input_variables=["task_names", "next_task_id", "objective"],
)
return cls(prompt=prompt, llm=llm, verbose=verbose)

@ -1,9 +1,10 @@
"""Base implementation for tools or skills."""
from abc import ABC, abstractmethod
from inspect import signature
from typing import Any, Dict, Optional, Sequence, Tuple, Type, Union
from pydantic import BaseModel, Extra, Field, validator
from pydantic import BaseModel, Extra, Field, validate_arguments, validator
from langchain.callbacks import get_callback_manager
from langchain.callbacks.base import BaseCallbackManager
@ -36,28 +37,28 @@ class BaseTool(ABC, BaseModel):
arbitrary_types_allowed = True
@property
def args(self) -> Union[Type[BaseModel], Type[str]]:
"""Generate an input pydantic model."""
return str if self.args_schema is None else self.args_schema
def args(self) -> dict:
if self.args_schema is not None:
return self.args_schema.schema()["properties"]
else:
inferred_model = validate_arguments(self._run).model # type: ignore
schema = inferred_model.schema()["properties"]
valid_keys = signature(self._run).parameters
return {k: schema[k] for k in valid_keys}
def _parse_input(
self,
tool_input: Union[str, Dict],
) -> None:
"""Convert tool input to pydantic model."""
input_args = self.args
input_args = self.args_schema
if isinstance(tool_input, str):
if issubclass(input_args, BaseModel):
if input_args is not None:
key_ = next(iter(input_args.__fields__.keys()))
input_args.validate({key_: tool_input})
else:
if issubclass(input_args, BaseModel):
if input_args is not None:
input_args.validate(tool_input)
else:
raise ValueError(
f"args_schema required for tool {self.name} in order to"
f" accept input of type {type(tool_input)}"
)
@validator("callback_manager", pre=True, always=True)
def set_callback_manager(

@ -13,7 +13,7 @@ class ReadFileInput(BaseModel):
class ReadFileTool(BaseTool):
name: str = "read_file"
tool_args: Type[BaseModel] = ReadFileInput
args_schema: Type[BaseModel] = ReadFileInput
description: str = "Read file from disk"
def _run(self, file_path: str) -> str:

@ -15,7 +15,7 @@ class WriteFileInput(BaseModel):
class WriteFileTool(BaseTool):
name: str = "write_file"
tool_args: Type[BaseModel] = WriteFileInput
args_schema: Type[BaseModel] = WriteFileInput
description: str = "Write file to disk"
def _run(self, file_path: str, text: str) -> str:

Loading…
Cancel
Save