Separate Runner Functions from Client (#5079)

Extract the methods specific to running an LLM or Chain on a dataset to
separate utility functions.

This simplifies the client a bit and lets us separate concerns of LCP
details from running examples (e.g., for evals)
This commit is contained in:
Zander Chase 2023-05-21 22:28:47 -07:00 committed by GitHub
parent 443ebe22f4
commit ef7d015be5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 499 additions and 404 deletions

View File

@ -1,7 +1,5 @@
from __future__ import annotations
import asyncio
import functools
import logging
import socket
from datetime import datetime
@ -10,9 +8,8 @@ from typing import (
TYPE_CHECKING,
Any,
Callable,
Coroutine,
Dict,
Iterable,
Iterator,
List,
Optional,
Tuple,
@ -27,10 +24,8 @@ from requests import Response
from tenacity import retry, stop_after_attempt, wait_fixed
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.tracers.langchain import LangChainTracer
from langchain.callbacks.tracers.schemas import Run, TracerSession
from langchain.chains.base import Chain
from langchain.chat_models.base import BaseChatModel
from langchain.client.models import (
Dataset,
DatasetCreate,
@ -38,15 +33,7 @@ from langchain.client.models import (
ExampleCreate,
ListRunsQueryParams,
)
from langchain.llms.base import BaseLLM
from langchain.schema import (
BaseMessage,
ChatResult,
HumanMessage,
LLMResult,
get_buffer_string,
messages_from_dict,
)
from langchain.client.runner_utils import arun_on_examples, run_on_examples
from langchain.utils import raise_for_status_with_text, xor_args
if TYPE_CHECKING:
@ -57,10 +44,6 @@ logger = logging.getLogger(__name__)
MODEL_OR_CHAIN_FACTORY = Union[Callable[[], Chain], BaseLanguageModel]
class InputFormatError(Exception):
"""Raised when input format is invalid."""
def _get_link_stem(url: str) -> str:
scheme = urlsplit(url).scheme
netloc_prefix = urlsplit(url).netloc.split(":")[0]
@ -231,7 +214,7 @@ class LangChainPlusClient(BaseSettings):
session_name: Optional[str] = None,
run_type: Optional[str] = None,
**kwargs: Any,
) -> List[Run]:
) -> Iterator[Run]:
"""List runs from the LangChain+ API."""
if session_name is not None:
if session_id is not None:
@ -245,7 +228,7 @@ class LangChainPlusClient(BaseSettings):
}
response = self._get("/runs", params=filtered_params)
raise_for_status_with_text(response)
return [Run(**run) for run in response.json()]
yield from [Run(**run) for run in response.json()]
@retry(stop=stop_after_attempt(3), wait=wait_fixed(0.5))
@xor_args(("session_id", "session_name"))
@ -279,11 +262,11 @@ class LangChainPlusClient(BaseSettings):
return TracerSession(**response.json())
@retry(stop=stop_after_attempt(3), wait=wait_fixed(0.5))
def list_sessions(self) -> List[TracerSession]:
def list_sessions(self) -> Iterator[TracerSession]:
"""List sessions from the LangChain+ API."""
response = self._get("/sessions")
raise_for_status_with_text(response)
return [TracerSession(**session) for session in response.json()]
yield from [TracerSession(**session) for session in response.json()]
def create_dataset(self, dataset_name: str, description: str) -> Dataset:
"""Create a dataset in the LangChain+ API."""
@ -326,11 +309,11 @@ class LangChainPlusClient(BaseSettings):
return Dataset(**result)
@retry(stop=stop_after_attempt(3), wait=wait_fixed(0.5))
def list_datasets(self, limit: int = 100) -> Iterable[Dataset]:
def list_datasets(self, limit: int = 100) -> Iterator[Dataset]:
"""List the datasets on the LangChain+ API."""
response = self._get("/datasets", params={"limit": limit})
raise_for_status_with_text(response)
return [Dataset(**dataset) for dataset in response.json()]
yield from [Dataset(**dataset) for dataset in response.json()]
@xor_args(("dataset_id", "dataset_name"))
def delete_dataset(
@ -346,7 +329,7 @@ class LangChainPlusClient(BaseSettings):
headers=self._headers,
)
raise_for_status_with_text(response)
return response.json()
return Dataset(**response.json())
@xor_args(("dataset_id", "dataset_name"))
def create_example(
@ -386,7 +369,7 @@ class LangChainPlusClient(BaseSettings):
@retry(stop=stop_after_attempt(3), wait=wait_fixed(0.5))
def list_examples(
self, dataset_id: Optional[str] = None, dataset_name: Optional[str] = None
) -> Iterable[Example]:
) -> Iterator[Example]:
"""List the datasets on the LangChain+ API."""
params = {}
if dataset_id is not None:
@ -398,195 +381,7 @@ class LangChainPlusClient(BaseSettings):
pass
response = self._get("/examples", params=params)
raise_for_status_with_text(response)
return [Example(**dataset) for dataset in response.json()]
@staticmethod
def _get_prompts(inputs: Dict[str, Any]) -> List[str]:
"""Get prompts from inputs."""
if not inputs:
raise InputFormatError("Inputs should not be empty.")
prompts = []
if "prompt" in inputs:
if not isinstance(inputs["prompt"], str):
raise InputFormatError(
"Expected string for 'prompt', got"
f" {type(inputs['prompt']).__name__}"
)
prompts = [inputs["prompt"]]
elif "prompts" in inputs:
if not isinstance(inputs["prompts"], list) or not all(
isinstance(i, str) for i in inputs["prompts"]
):
raise InputFormatError(
"Expected list of strings for 'prompts',"
f" got {type(inputs['prompts']).__name__}"
)
prompts = inputs["prompts"]
elif len(inputs) == 1:
prompt_ = next(iter(inputs.values()))
if isinstance(prompt_, str):
prompts = [prompt_]
elif isinstance(prompt_, list) and all(isinstance(i, str) for i in prompt_):
prompts = prompt_
else:
raise InputFormatError(
f"LLM Run expects string prompt input. Got {inputs}"
)
else:
raise InputFormatError(
f"LLM Run expects 'prompt' or 'prompts' in inputs. Got {inputs}"
)
return prompts
@staticmethod
def _get_messages(inputs: Dict[str, Any]) -> List[List[BaseMessage]]:
"""Get Chat Messages from inputs."""
if not inputs:
raise InputFormatError("Inputs should not be empty.")
if "messages" in inputs:
single_input = inputs["messages"]
elif len(inputs) == 1:
single_input = next(iter(inputs.values()))
else:
raise InputFormatError(
f"Chat Run expects 'messages' in inputs. Got {inputs}"
)
if isinstance(single_input, list) and all(
isinstance(i, dict) for i in single_input
):
raw_messages = [single_input]
elif isinstance(single_input, list) and all(
isinstance(i, list) for i in single_input
):
raw_messages = single_input
else:
raise InputFormatError(
f"Chat Run expects List[dict] or List[List[dict]] 'messages'"
f" input. Got {inputs}"
)
return [messages_from_dict(batch) for batch in raw_messages]
@staticmethod
async def _arun_llm(
llm: BaseLanguageModel,
inputs: Dict[str, Any],
langchain_tracer: LangChainTracer,
) -> Union[LLMResult, ChatResult]:
if isinstance(llm, BaseLLM):
try:
llm_prompts = LangChainPlusClient._get_prompts(inputs)
llm_output = await llm.agenerate(
llm_prompts, callbacks=[langchain_tracer]
)
except InputFormatError:
llm_messages = LangChainPlusClient._get_messages(inputs)
buffer_strings = [
get_buffer_string(messages) for messages in llm_messages
]
llm_output = await llm.agenerate(
buffer_strings, callbacks=[langchain_tracer]
)
elif isinstance(llm, BaseChatModel):
try:
messages = LangChainPlusClient._get_messages(inputs)
llm_output = await llm.agenerate(messages, callbacks=[langchain_tracer])
except InputFormatError:
prompts = LangChainPlusClient._get_prompts(inputs)
converted_messages: List[List[BaseMessage]] = [
[HumanMessage(content=prompt)] for prompt in prompts
]
llm_output = await llm.agenerate(
converted_messages, callbacks=[langchain_tracer]
)
else:
raise ValueError(f"Unsupported LLM type {type(llm)}")
return llm_output
@staticmethod
async def _arun_llm_or_chain(
example: Example,
langchain_tracer: LangChainTracer,
llm_or_chain_factory: MODEL_OR_CHAIN_FACTORY,
n_repetitions: int,
) -> Union[List[dict], List[str], List[LLMResult], List[ChatResult]]:
"""Run the chain asynchronously."""
previous_example_id = langchain_tracer.example_id
langchain_tracer.example_id = example.id
outputs = []
for _ in range(n_repetitions):
try:
if isinstance(llm_or_chain_factory, BaseLanguageModel):
output: Any = await LangChainPlusClient._arun_llm(
llm_or_chain_factory, example.inputs, langchain_tracer
)
else:
chain = llm_or_chain_factory()
output = await chain.arun(
example.inputs, callbacks=[langchain_tracer]
)
outputs.append(output)
except Exception as e:
logger.warning(f"Chain failed for example {example.id}. Error: {e}")
outputs.append({"Error": str(e)})
langchain_tracer.example_id = previous_example_id
return outputs
@staticmethod
async def _gather_with_concurrency(
n: int,
initializer: Callable[[], Coroutine[Any, Any, LangChainTracer]],
*async_funcs: Callable[[LangChainTracer, Dict], Coroutine[Any, Any, Any]],
) -> List[Any]:
"""
Run coroutines with a concurrency limit.
Args:
n: The maximum number of concurrent tasks.
initializer: A coroutine that initializes shared resources for the tasks.
async_funcs: The async_funcs to be run concurrently.
Returns:
A list of results from the coroutines.
"""
semaphore = asyncio.Semaphore(n)
job_state = {"num_processed": 0}
tracer_queue: asyncio.Queue[LangChainTracer] = asyncio.Queue()
for _ in range(n):
tracer_queue.put_nowait(await initializer())
async def run_coroutine_with_semaphore(
async_func: Callable[[LangChainTracer, Dict], Coroutine[Any, Any, Any]]
) -> Any:
async with semaphore:
tracer = await tracer_queue.get()
try:
result = await async_func(tracer, job_state)
finally:
tracer_queue.put_nowait(tracer)
return result
return await asyncio.gather(
*(run_coroutine_with_semaphore(function) for function in async_funcs)
)
async def _tracer_initializer(self, session_name: str) -> LangChainTracer:
"""
Initialize a tracer to share across tasks.
Args:
session_name: The session name for the tracer.
Returns:
A LangChainTracer instance with an active session.
"""
tracer = LangChainTracer(session_name=session_name)
tracer.ensure_session()
return tracer
yield from [Example(**dataset) for dataset in response.json()]
async def arun_on_dataset(
self,
@ -622,93 +417,15 @@ class LangChainPlusClient(BaseSettings):
)
dataset = self.read_dataset(dataset_name=dataset_name)
examples = self.list_examples(dataset_id=str(dataset.id))
results: Dict[str, List[Any]] = {}
async def process_example(
example: Example, tracer: LangChainTracer, job_state: dict
) -> None:
"""Process a single example."""
result = await LangChainPlusClient._arun_llm_or_chain(
example,
tracer,
return await arun_on_examples(
examples,
llm_or_chain_factory,
num_repetitions,
concurrency_level=concurrency_level,
num_repetitions=num_repetitions,
session_name=session_name,
verbose=verbose,
)
results[str(example.id)] = result
job_state["num_processed"] += 1
if verbose:
print(
f"Processed examples: {job_state['num_processed']}",
end="\r",
flush=True,
)
await self._gather_with_concurrency(
concurrency_level,
functools.partial(self._tracer_initializer, session_name),
*(functools.partial(process_example, e) for e in examples),
)
return results
@staticmethod
def run_llm(
llm: BaseLanguageModel,
inputs: Dict[str, Any],
langchain_tracer: LangChainTracer,
) -> Union[LLMResult, ChatResult]:
"""Run the language model on the example."""
if isinstance(llm, BaseLLM):
try:
llm_prompts = LangChainPlusClient._get_prompts(inputs)
llm_output = llm.generate(llm_prompts, callbacks=[langchain_tracer])
except InputFormatError:
llm_messages = LangChainPlusClient._get_messages(inputs)
buffer_strings = [
get_buffer_string(messages) for messages in llm_messages
]
llm_output = llm.generate(buffer_strings, callbacks=[langchain_tracer])
elif isinstance(llm, BaseChatModel):
try:
messages = LangChainPlusClient._get_messages(inputs)
llm_output = llm.generate(messages, callbacks=[langchain_tracer])
except InputFormatError:
prompts = LangChainPlusClient._get_prompts(inputs)
converted_messages: List[List[BaseMessage]] = [
[HumanMessage(content=prompt)] for prompt in prompts
]
llm_output = llm.generate(
converted_messages, callbacks=[langchain_tracer]
)
else:
raise ValueError(f"Unsupported LLM type {type(llm)}")
return llm_output
@staticmethod
def run_llm_or_chain(
example: Example,
langchain_tracer: LangChainTracer,
llm_or_chain_factory: MODEL_OR_CHAIN_FACTORY,
n_repetitions: int,
) -> Union[List[dict], List[str], List[LLMResult], List[ChatResult]]:
"""Run the chain synchronously."""
previous_example_id = langchain_tracer.example_id
langchain_tracer.example_id = example.id
outputs = []
for _ in range(n_repetitions):
try:
if isinstance(llm_or_chain_factory, BaseLanguageModel):
output: Any = LangChainPlusClient.run_llm(
llm_or_chain_factory, example.inputs, langchain_tracer
)
else:
chain = llm_or_chain_factory()
output = chain.run(example.inputs, callbacks=[langchain_tracer])
outputs.append(output)
except Exception as e:
logger.warning(f"Chain failed for example {example.id}. Error: {e}")
outputs.append({"Error": str(e)})
langchain_tracer.example_id = previous_example_id
return outputs
def run_on_dataset(
self,
@ -741,18 +458,11 @@ class LangChainPlusClient(BaseSettings):
session_name, llm_or_chain_factory, dataset_name
)
dataset = self.read_dataset(dataset_name=dataset_name)
examples = list(self.list_examples(dataset_id=str(dataset.id)))
results: Dict[str, Any] = {}
tracer = LangChainTracer(session_name=session_name)
tracer.ensure_session()
for i, example in enumerate(examples):
result = self.run_llm_or_chain(
example,
tracer,
examples = self.list_examples(dataset_id=str(dataset.id))
return run_on_examples(
examples,
llm_or_chain_factory,
num_repetitions,
num_repetitions=num_repetitions,
session_name=session_name,
verbose=verbose,
)
if verbose:
print(f"{i+1} processed", flush=True, end="\r")
results[str(example.id)] = result
return results

View File

@ -0,0 +1,375 @@
"""Utilities for running LLMs/Chains over datasets."""
from __future__ import annotations
import asyncio
import functools
import logging
from typing import Any, Callable, Coroutine, Dict, Iterator, List, Optional, Union
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackHandler
from langchain.callbacks.manager import Callbacks
from langchain.callbacks.tracers.langchain import LangChainTracer
from langchain.chains.base import Chain
from langchain.chat_models.base import BaseChatModel
from langchain.client.models import Example
from langchain.llms.base import BaseLLM
from langchain.schema import (
BaseMessage,
ChatResult,
HumanMessage,
LLMResult,
get_buffer_string,
messages_from_dict,
)
logger = logging.getLogger(__name__)
MODEL_OR_CHAIN_FACTORY = Union[Callable[[], Chain], BaseLanguageModel]
class InputFormatError(Exception):
"""Raised when input format is invalid."""
def _get_prompts(inputs: Dict[str, Any]) -> List[str]:
"""Get prompts from inputs."""
if not inputs:
raise InputFormatError("Inputs should not be empty.")
prompts = []
if "prompt" in inputs:
if not isinstance(inputs["prompt"], str):
raise InputFormatError(
"Expected string for 'prompt', got"
f" {type(inputs['prompt']).__name__}"
)
prompts = [inputs["prompt"]]
elif "prompts" in inputs:
if not isinstance(inputs["prompts"], list) or not all(
isinstance(i, str) for i in inputs["prompts"]
):
raise InputFormatError(
"Expected list of strings for 'prompts',"
f" got {type(inputs['prompts']).__name__}"
)
prompts = inputs["prompts"]
elif len(inputs) == 1:
prompt_ = next(iter(inputs.values()))
if isinstance(prompt_, str):
prompts = [prompt_]
elif isinstance(prompt_, list) and all(isinstance(i, str) for i in prompt_):
prompts = prompt_
else:
raise InputFormatError(f"LLM Run expects string prompt input. Got {inputs}")
else:
raise InputFormatError(
f"LLM Run expects 'prompt' or 'prompts' in inputs. Got {inputs}"
)
return prompts
def _get_messages(inputs: Dict[str, Any]) -> List[List[BaseMessage]]:
"""Get Chat Messages from inputs."""
if not inputs:
raise InputFormatError("Inputs should not be empty.")
if "messages" in inputs:
single_input = inputs["messages"]
elif len(inputs) == 1:
single_input = next(iter(inputs.values()))
else:
raise InputFormatError(f"Chat Run expects 'messages' in inputs. Got {inputs}")
if isinstance(single_input, list) and all(
isinstance(i, dict) for i in single_input
):
raw_messages = [single_input]
elif isinstance(single_input, list) and all(
isinstance(i, list) for i in single_input
):
raw_messages = single_input
else:
raise InputFormatError(
f"Chat Run expects List[dict] or List[List[dict]] 'messages'"
f" input. Got {inputs}"
)
return [messages_from_dict(batch) for batch in raw_messages]
async def _arun_llm(
llm: BaseLanguageModel,
inputs: Dict[str, Any],
langchain_tracer: Optional[LangChainTracer],
) -> Union[LLMResult, ChatResult]:
callbacks: Optional[List[BaseCallbackHandler]] = (
[langchain_tracer] if langchain_tracer else None
)
if isinstance(llm, BaseLLM):
try:
llm_prompts = _get_prompts(inputs)
llm_output = await llm.agenerate(llm_prompts, callbacks=callbacks)
except InputFormatError:
llm_messages = _get_messages(inputs)
buffer_strings = [get_buffer_string(messages) for messages in llm_messages]
llm_output = await llm.agenerate(buffer_strings, callbacks=callbacks)
elif isinstance(llm, BaseChatModel):
try:
messages = _get_messages(inputs)
llm_output = await llm.agenerate(messages, callbacks=callbacks)
except InputFormatError:
prompts = _get_prompts(inputs)
converted_messages: List[List[BaseMessage]] = [
[HumanMessage(content=prompt)] for prompt in prompts
]
llm_output = await llm.agenerate(converted_messages, callbacks=callbacks)
else:
raise ValueError(f"Unsupported LLM type {type(llm)}")
return llm_output
async def _arun_llm_or_chain(
example: Example,
llm_or_chain_factory: MODEL_OR_CHAIN_FACTORY,
n_repetitions: int,
langchain_tracer: Optional[LangChainTracer],
) -> Union[List[dict], List[str], List[LLMResult], List[ChatResult]]:
"""Run the chain asynchronously."""
if langchain_tracer is not None:
previous_example_id = langchain_tracer.example_id
langchain_tracer.example_id = example.id
callbacks: Optional[List[BaseCallbackHandler]] = [langchain_tracer]
else:
previous_example_id = None
callbacks = None
outputs = []
for _ in range(n_repetitions):
try:
if isinstance(llm_or_chain_factory, BaseLanguageModel):
output: Any = await _arun_llm(
llm_or_chain_factory, example.inputs, langchain_tracer
)
else:
chain = llm_or_chain_factory()
output = await chain.arun(example.inputs, callbacks=callbacks)
outputs.append(output)
except Exception as e:
logger.warning(f"Chain failed for example {example.id}. Error: {e}")
outputs.append({"Error": str(e)})
if langchain_tracer is not None:
langchain_tracer.example_id = previous_example_id
return outputs
async def _gather_with_concurrency(
n: int,
initializer: Callable[[], Coroutine[Any, Any, Optional[LangChainTracer]]],
*async_funcs: Callable[[Optional[LangChainTracer], Dict], Coroutine[Any, Any, Any]],
) -> List[Any]:
"""
Run coroutines with a concurrency limit.
Args:
n: The maximum number of concurrent tasks.
initializer: A coroutine that initializes shared resources for the tasks.
async_funcs: The async_funcs to be run concurrently.
Returns:
A list of results from the coroutines.
"""
semaphore = asyncio.Semaphore(n)
job_state = {"num_processed": 0}
tracer_queue: asyncio.Queue[Optional[LangChainTracer]] = asyncio.Queue()
for _ in range(n):
tracer_queue.put_nowait(await initializer())
async def run_coroutine_with_semaphore(
async_func: Callable[
[Optional[LangChainTracer], Dict], Coroutine[Any, Any, Any]
]
) -> Any:
async with semaphore:
tracer = await tracer_queue.get()
try:
result = await async_func(tracer, job_state)
finally:
tracer_queue.put_nowait(tracer)
return result
return await asyncio.gather(
*(run_coroutine_with_semaphore(function) for function in async_funcs)
)
async def _tracer_initializer(session_name: Optional[str]) -> Optional[LangChainTracer]:
"""
Initialize a tracer to share across tasks.
Args:
session_name: The session name for the tracer.
Returns:
A LangChainTracer instance with an active session.
"""
if session_name:
tracer = LangChainTracer(session_name=session_name)
tracer.ensure_session()
return tracer
else:
return None
async def arun_on_examples(
examples: Iterator[Example],
llm_or_chain_factory: MODEL_OR_CHAIN_FACTORY,
*,
concurrency_level: int = 5,
num_repetitions: int = 1,
session_name: Optional[str] = None,
verbose: bool = False,
) -> Dict[str, Any]:
"""
Run the chain on examples and store traces to the specified session name.
Args:
examples: Examples to run the model or chain over
llm_or_chain_factory: Language model or Chain constructor to run
over the dataset. The Chain constructor is used to permit
independent calls on each example without carrying over state.
concurrency_level: The number of async tasks to run concurrently.
num_repetitions: Number of times to run the model on each example.
This is useful when testing success rates or generating confidence
intervals.
session_name: Session name to use when tracing runs.
verbose: Whether to print progress.
Returns:
A dictionary mapping example ids to the model outputs.
"""
results: Dict[str, List[Any]] = {}
async def process_example(
example: Example, tracer: LangChainTracer, job_state: dict
) -> None:
"""Process a single example."""
result = await _arun_llm_or_chain(
example,
llm_or_chain_factory,
num_repetitions,
tracer,
)
results[str(example.id)] = result
job_state["num_processed"] += 1
if verbose:
print(
f"Processed examples: {job_state['num_processed']}",
end="\r",
flush=True,
)
await _gather_with_concurrency(
concurrency_level,
functools.partial(_tracer_initializer, session_name),
*(functools.partial(process_example, e) for e in examples),
)
return results
def run_llm(
llm: BaseLanguageModel,
inputs: Dict[str, Any],
callbacks: Callbacks,
) -> Union[LLMResult, ChatResult]:
"""Run the language model on the example."""
if isinstance(llm, BaseLLM):
try:
llm_prompts = _get_prompts(inputs)
llm_output = llm.generate(llm_prompts, callbacks=callbacks)
except InputFormatError:
llm_messages = _get_messages(inputs)
buffer_strings = [get_buffer_string(messages) for messages in llm_messages]
llm_output = llm.generate(buffer_strings, callbacks=callbacks)
elif isinstance(llm, BaseChatModel):
try:
messages = _get_messages(inputs)
llm_output = llm.generate(messages, callbacks=callbacks)
except InputFormatError:
prompts = _get_prompts(inputs)
converted_messages: List[List[BaseMessage]] = [
[HumanMessage(content=prompt)] for prompt in prompts
]
llm_output = llm.generate(converted_messages, callbacks=callbacks)
else:
raise ValueError(f"Unsupported LLM type {type(llm)}")
return llm_output
def run_llm_or_chain(
example: Example,
llm_or_chain_factory: MODEL_OR_CHAIN_FACTORY,
n_repetitions: int,
langchain_tracer: Optional[LangChainTracer] = None,
) -> Union[List[dict], List[str], List[LLMResult], List[ChatResult]]:
"""Run the chain synchronously."""
if langchain_tracer is not None:
previous_example_id = langchain_tracer.example_id
langchain_tracer.example_id = example.id
callbacks: Optional[List[BaseCallbackHandler]] = [langchain_tracer]
else:
previous_example_id = None
callbacks = None
outputs = []
for _ in range(n_repetitions):
try:
if isinstance(llm_or_chain_factory, BaseLanguageModel):
output: Any = run_llm(llm_or_chain_factory, example.inputs, callbacks)
else:
chain = llm_or_chain_factory()
output = chain.run(example.inputs, callbacks=callbacks)
outputs.append(output)
except Exception as e:
logger.warning(f"Chain failed for example {example.id}. Error: {e}")
outputs.append({"Error": str(e)})
if langchain_tracer is not None:
langchain_tracer.example_id = previous_example_id
return outputs
def run_on_examples(
examples: Iterator[Example],
llm_or_chain_factory: MODEL_OR_CHAIN_FACTORY,
*,
num_repetitions: int = 1,
session_name: Optional[str] = None,
verbose: bool = False,
) -> Dict[str, Any]:
"""Run the chain on examples and store traces to the specified session name.
Args:
examples: Examples to run model or chain over.
llm_or_chain_factory: Language model or Chain constructor to run
over the dataset. The Chain constructor is used to permit
independent calls on each example without carrying over state.
concurrency_level: Number of async workers to run in parallel.
num_repetitions: Number of times to run the model on each example.
This is useful when testing success rates or generating confidence
intervals.
session_name: Session name to use when tracing runs.
verbose: Whether to print progress.
Returns:
A dictionary mapping example ids to the model outputs.
"""
results: Dict[str, Any] = {}
tracer = LangChainTracer(session_name=session_name) if session_name else None
for i, example in enumerate(examples):
result = run_llm_or_chain(
example,
llm_or_chain_factory,
num_repetitions,
langchain_tracer=tracer,
)
if verbose:
print(f"{i+1} processed", flush=True, end="\r")
results[str(example.id)] = result
return results

View File

@ -12,14 +12,11 @@ from langchain.callbacks.tracers.langchain import LangChainTracer
from langchain.callbacks.tracers.schemas import TracerSession
from langchain.chains.base import Chain
from langchain.client.langchain import (
InputFormatError,
LangChainPlusClient,
_get_link_stem,
_is_localhost,
)
from langchain.client.models import Dataset, Example
from tests.unit_tests.llms.fake_chat_model import FakeChatModel
from tests.unit_tests.llms.fake_llm import FakeLLM
_CREATED_AT = datetime(2015, 1, 1, 0, 0, 0)
_TENANT_ID = "7a3d2b56-cd5b-44e5-846f-7eb6e8144ce4"
@ -191,9 +188,9 @@ async def test_arun_on_dataset(monkeypatch: pytest.MonkeyPatch) -> None:
async def mock_arun_chain(
example: Example,
tracer: Any,
llm_or_chain: Union[BaseLanguageModel, Chain],
n_repetitions: int,
tracer: Any,
) -> List[Dict[str, Any]]:
return [
{"result": f"Result for example {example.id}"} for _ in range(n_repetitions)
@ -206,8 +203,8 @@ async def test_arun_on_dataset(monkeypatch: pytest.MonkeyPatch) -> None:
LangChainPlusClient, "read_dataset", new=mock_read_dataset
), mock.patch.object(
LangChainPlusClient, "list_examples", new=mock_list_examples
), mock.patch.object(
LangChainPlusClient, "_arun_llm_or_chain", new=mock_arun_chain
), mock.patch(
"langchain.client.runner_utils._arun_llm_or_chain", new=mock_arun_chain
), mock.patch.object(
LangChainTracer, "ensure_session", new=mock_ensure_session
):
@ -233,85 +230,3 @@ async def test_arun_on_dataset(monkeypatch: pytest.MonkeyPatch) -> None:
for uuid_ in uuids
}
assert results == expected
_EXAMPLE_MESSAGE = {
"data": {"content": "Foo", "example": False, "additional_kwargs": {}},
"type": "human",
}
_VALID_MESSAGES = [
{"messages": [_EXAMPLE_MESSAGE], "other_key": "value"},
{"messages": [], "other_key": "value"},
{
"messages": [[_EXAMPLE_MESSAGE, _EXAMPLE_MESSAGE], [_EXAMPLE_MESSAGE]],
"other_key": "value",
},
{"any_key": [_EXAMPLE_MESSAGE]},
{"any_key": [[_EXAMPLE_MESSAGE, _EXAMPLE_MESSAGE], [_EXAMPLE_MESSAGE]]},
]
_VALID_PROMPTS = [
{"prompts": ["foo", "bar", "baz"], "other_key": "value"},
{"prompt": "foo", "other_key": ["bar", "baz"]},
{"some_key": "foo"},
{"some_key": ["foo", "bar"]},
]
@pytest.mark.parametrize(
"inputs",
_VALID_MESSAGES,
)
def test__get_messages_valid(inputs: Dict[str, Any]) -> None:
{"messages": []}
LangChainPlusClient._get_messages(inputs)
@pytest.mark.parametrize(
"inputs",
_VALID_PROMPTS,
)
def test__get_prompts_valid(inputs: Dict[str, Any]) -> None:
LangChainPlusClient._get_prompts(inputs)
@pytest.mark.parametrize(
"inputs",
[
{"prompts": "foo"},
{"prompt": ["foo"]},
{"some_key": 3},
{"some_key": "foo", "other_key": "bar"},
],
)
def test__get_prompts_invalid(inputs: Dict[str, Any]) -> None:
with pytest.raises(InputFormatError):
LangChainPlusClient._get_prompts(inputs)
@pytest.mark.parametrize(
"inputs",
[
{"one_key": [_EXAMPLE_MESSAGE], "other_key": "value"},
{
"messages": [[_EXAMPLE_MESSAGE, _EXAMPLE_MESSAGE], _EXAMPLE_MESSAGE],
"other_key": "value",
},
{"prompts": "foo"},
{},
],
)
def test__get_messages_invalid(inputs: Dict[str, Any]) -> None:
with pytest.raises(InputFormatError):
LangChainPlusClient._get_messages(inputs)
@pytest.mark.parametrize("inputs", _VALID_PROMPTS + _VALID_MESSAGES)
def test_run_llm_all_formats(inputs: Dict[str, Any]) -> None:
llm = FakeLLM()
LangChainPlusClient.run_llm(llm, inputs, mock.MagicMock())
@pytest.mark.parametrize("inputs", _VALID_MESSAGES + _VALID_PROMPTS)
def test_run_chat_model_all_formats(inputs: Dict[str, Any]) -> None:
llm = FakeChatModel()
LangChainPlusClient.run_llm(llm, inputs, mock.MagicMock())

View File

@ -0,0 +1,95 @@
"""Test the LangChain+ client."""
from typing import Any, Dict
from unittest import mock
import pytest
from langchain.client.runner_utils import (
InputFormatError,
_get_messages,
_get_prompts,
run_llm,
)
from tests.unit_tests.llms.fake_chat_model import FakeChatModel
from tests.unit_tests.llms.fake_llm import FakeLLM
_EXAMPLE_MESSAGE = {
"data": {"content": "Foo", "example": False, "additional_kwargs": {}},
"type": "human",
}
_VALID_MESSAGES = [
{"messages": [_EXAMPLE_MESSAGE], "other_key": "value"},
{"messages": [], "other_key": "value"},
{
"messages": [[_EXAMPLE_MESSAGE, _EXAMPLE_MESSAGE], [_EXAMPLE_MESSAGE]],
"other_key": "value",
},
{"any_key": [_EXAMPLE_MESSAGE]},
{"any_key": [[_EXAMPLE_MESSAGE, _EXAMPLE_MESSAGE], [_EXAMPLE_MESSAGE]]},
]
_VALID_PROMPTS = [
{"prompts": ["foo", "bar", "baz"], "other_key": "value"},
{"prompt": "foo", "other_key": ["bar", "baz"]},
{"some_key": "foo"},
{"some_key": ["foo", "bar"]},
]
@pytest.mark.parametrize(
"inputs",
_VALID_MESSAGES,
)
def test__get_messages_valid(inputs: Dict[str, Any]) -> None:
{"messages": []}
_get_messages(inputs)
@pytest.mark.parametrize(
"inputs",
_VALID_PROMPTS,
)
def test__get_prompts_valid(inputs: Dict[str, Any]) -> None:
_get_prompts(inputs)
@pytest.mark.parametrize(
"inputs",
[
{"prompts": "foo"},
{"prompt": ["foo"]},
{"some_key": 3},
{"some_key": "foo", "other_key": "bar"},
],
)
def test__get_prompts_invalid(inputs: Dict[str, Any]) -> None:
with pytest.raises(InputFormatError):
_get_prompts(inputs)
@pytest.mark.parametrize(
"inputs",
[
{"one_key": [_EXAMPLE_MESSAGE], "other_key": "value"},
{
"messages": [[_EXAMPLE_MESSAGE, _EXAMPLE_MESSAGE], _EXAMPLE_MESSAGE],
"other_key": "value",
},
{"prompts": "foo"},
{},
],
)
def test__get_messages_invalid(inputs: Dict[str, Any]) -> None:
with pytest.raises(InputFormatError):
_get_messages(inputs)
@pytest.mark.parametrize("inputs", _VALID_PROMPTS + _VALID_MESSAGES)
def test_run_llm_all_formats(inputs: Dict[str, Any]) -> None:
llm = FakeLLM()
run_llm(llm, inputs, mock.MagicMock())
@pytest.mark.parametrize("inputs", _VALID_MESSAGES + _VALID_PROMPTS)
def test_run_chat_model_all_formats(inputs: Dict[str, Any]) -> None:
llm = FakeChatModel()
run_llm(llm, inputs, mock.MagicMock())