Change method to calculate number of tokens for OpenAIChat (#1457)

Solves https://github.com/hwchase17/langchain/issues/1412

Currently `OpenAIChat` inherits the way it calculates the number of
tokens, `get_num_token`, from `BaseLLM`.
In the other hand `OpenAI` inherits from `BaseOpenAI`. 

`BaseOpenAI` and `BaseLLM` uses different methodologies for doing this.
The first relies on `tiktoken` while the second on `GPT2TokenizerFast`.

The motivation of this PR is:

1. Bring consistency about the way of calculating number of tokens
`get_num_token` to the `OpenAI` family, regardless of `Chat` vs `non
Chat` scenarios.
2. Give preference to the `tiktoken` method as it's serverless friendly.
It doesn't require downloading models which might make it incompatible
with `readonly` filesystems.
This commit is contained in:
Juanky Soriano 2023-03-06 09:20:25 -06:00 committed by GitHub
parent 763f879536
commit dec3750875
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -692,3 +692,25 @@ class OpenAIChat(BaseLLM, BaseModel):
def _llm_type(self) -> str:
"""Return type of llm."""
return "openai-chat"
def get_num_tokens(self, text: str) -> int:
"""Calculate num tokens with tiktoken package."""
# tiktoken NOT supported for Python 3.8 or below
if sys.version_info[1] <= 8:
return super().get_num_tokens(text)
try:
import tiktoken
except ImportError:
raise ValueError(
"Could not import tiktoken python package. "
"This is needed in order to calculate get_num_tokens. "
"Please it install it with `pip install tiktoken`."
)
# create a GPT-3.5-Turbo encoder instance
enc = tiktoken.encoding_for_model("gpt-3.5-turbo")
# encode the text using the GPT-3.5-Turbo encoder
tokenized_text = enc.encode(text)
# calculate the number of tokens in the encoded text
return len(tokenized_text)