forked from Archives/langchain
Add ReAct eval chain (#3161)
- Adds GPT-4 eval chain for arbitrary agents using any set of tools - Adds notebook --------- Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This commit is contained in:
parent
4bc209c6f7
commit
cfd34e268e
@ -283,7 +283,7 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.11.2"
|
"version": "3.9.1"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
|
342
docs/use_cases/evaluation/generic_agent_evaluation.ipynb
Normal file
342
docs/use_cases/evaluation/generic_agent_evaluation.ipynb
Normal file
@ -0,0 +1,342 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Generic Agent Evaluation\n",
|
||||||
|
"\n",
|
||||||
|
"Good evaluation is key for quickly iterating on your agent's prompts and tools. Here we provide an example of how to use the TrajectoryEvalChain to evaluate your agent."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Setup\n",
|
||||||
|
"\n",
|
||||||
|
"Let's start by defining our agent."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 2,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain import Wikipedia\n",
|
||||||
|
"from langchain.chat_models import ChatOpenAI\n",
|
||||||
|
"from langchain.agents import initialize_agent, Tool\n",
|
||||||
|
"from langchain.agents import AgentType\n",
|
||||||
|
"from langchain.agents.react.base import DocstoreExplorer\n",
|
||||||
|
"from langchain.memory import ConversationBufferMemory\n",
|
||||||
|
"from langchain import LLMMathChain\n",
|
||||||
|
"from langchain.llms import OpenAI\n",
|
||||||
|
"\n",
|
||||||
|
"from langchain import SerpAPIWrapper\n",
|
||||||
|
"\n",
|
||||||
|
"docstore = DocstoreExplorer(Wikipedia())\n",
|
||||||
|
"\n",
|
||||||
|
"math_llm = OpenAI(temperature=0)\n",
|
||||||
|
"\n",
|
||||||
|
"llm_math_chain = LLMMathChain(llm=math_llm, verbose=True)\n",
|
||||||
|
"\n",
|
||||||
|
"search = SerpAPIWrapper()\n",
|
||||||
|
"\n",
|
||||||
|
"tools = [\n",
|
||||||
|
" Tool(\n",
|
||||||
|
" name=\"Search\",\n",
|
||||||
|
" func=docstore.search,\n",
|
||||||
|
" description=\"useful for when you need to ask with search\",\n",
|
||||||
|
" ),\n",
|
||||||
|
" Tool(\n",
|
||||||
|
" name=\"Lookup\",\n",
|
||||||
|
" func=docstore.lookup,\n",
|
||||||
|
" description=\"useful for when you need to ask with lookup\",\n",
|
||||||
|
" ),\n",
|
||||||
|
" Tool(\n",
|
||||||
|
" name=\"Calculator\",\n",
|
||||||
|
" func=llm_math_chain.run,\n",
|
||||||
|
" description=\"useful for doing calculations\",\n",
|
||||||
|
" ),\n",
|
||||||
|
" Tool(\n",
|
||||||
|
" name=\"Search the Web (SerpAPI)\",\n",
|
||||||
|
" func=search.run,\n",
|
||||||
|
" description=\"useful for when you need to answer questions about current events\",\n",
|
||||||
|
" ),\n",
|
||||||
|
"]\n",
|
||||||
|
"\n",
|
||||||
|
"memory = ConversationBufferMemory(\n",
|
||||||
|
" memory_key=\"chat_history\", return_messages=True, output_key=\"output\"\n",
|
||||||
|
")\n",
|
||||||
|
"\n",
|
||||||
|
"llm = ChatOpenAI(temperature=0, model_name=\"gpt-3.5-turbo\")\n",
|
||||||
|
"\n",
|
||||||
|
"agent = initialize_agent(\n",
|
||||||
|
" tools,\n",
|
||||||
|
" llm,\n",
|
||||||
|
" agent=AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION,\n",
|
||||||
|
" verbose=True,\n",
|
||||||
|
" memory=memory,\n",
|
||||||
|
" return_intermediate_steps=True, # This is needed for the evaluation later\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Testing the Agent\n",
|
||||||
|
"\n",
|
||||||
|
"Now let's try our agent out on some example queries."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 3,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
||||||
|
"\u001b[32;1m\u001b[1;3m{\n",
|
||||||
|
" \"action\": \"Search the Web (SerpAPI)\",\n",
|
||||||
|
" \"action_input\": \"How many ping pong balls would it take to fill the entire Empire State Building?\"\n",
|
||||||
|
"}\u001b[0m\n",
|
||||||
|
"Observation: \u001b[31;1m\u001b[1;3m12.8 billion. The volume of the Empire State Building Googles in at around 37 million ft³. A golf ball comes in at about 2.5 in³.\u001b[0m\n",
|
||||||
|
"Thought:\u001b[32;1m\u001b[1;3m{\n",
|
||||||
|
" \"action\": \"Final Answer\",\n",
|
||||||
|
" \"action_input\": \"It would take approximately 12.8 billion ping pong balls to fill the entire Empire State Building.\"\n",
|
||||||
|
"}\u001b[0m\n",
|
||||||
|
"\n",
|
||||||
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"query_one = \"How many ping pong balls would it take to fill the entire Empire State Building?\"\n",
|
||||||
|
"\n",
|
||||||
|
"test_outputs_one = agent({\"input\": query_one}, return_only_outputs=False)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"This looks good! Let's try it out on another query."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 4,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
||||||
|
"\u001b[32;1m\u001b[1;3m{\n",
|
||||||
|
" \"action\": \"Calculator\",\n",
|
||||||
|
" \"action_input\": \"The length of the Eiffel Tower is 324 meters. The distance from coast to coast in the US is approximately 4,828 kilometers. First, we need to convert 4,828 kilometers to meters, which gives us 4,828,000 meters. To find out how many Eiffel Towers we need, we can divide 4,828,000 by 324. This gives us approximately 14,876 Eiffel Towers.\"\n",
|
||||||
|
"}\u001b[0m\n",
|
||||||
|
"\n",
|
||||||
|
"\u001b[1m> Entering new LLMMathChain chain...\u001b[0m\n",
|
||||||
|
"The length of the Eiffel Tower is 324 meters. The distance from coast to coast in the US is approximately 4,828 kilometers. First, we need to convert 4,828 kilometers to meters, which gives us 4,828,000 meters. To find out how many Eiffel Towers we need, we can divide 4,828,000 by 324. This gives us approximately 14,876 Eiffel Towers.\u001b[32;1m\u001b[1;3m\n",
|
||||||
|
"```text\n",
|
||||||
|
"4828000 / 324\n",
|
||||||
|
"```\n",
|
||||||
|
"...numexpr.evaluate(\"4828000 / 324\")...\n",
|
||||||
|
"\u001b[0m\n",
|
||||||
|
"Answer: \u001b[33;1m\u001b[1;3m14901.234567901234\u001b[0m\n",
|
||||||
|
"\u001b[1m> Finished chain.\u001b[0m\n",
|
||||||
|
"\n",
|
||||||
|
"Observation: \u001b[38;5;200m\u001b[1;3mAnswer: 14901.234567901234\u001b[0m\n",
|
||||||
|
"Thought:\u001b[32;1m\u001b[1;3m{\n",
|
||||||
|
" \"action\": \"Calculator\",\n",
|
||||||
|
" \"action_input\": \"The length of the Eiffel Tower is 324 meters. The distance from coast to coast in the US is approximately 4,828 kilometers. First, we need to convert 4,828 kilometers to meters, which gives us 4,828,000 meters. To find out how many Eiffel Towers we need, we can divide 4,828,000 by 324. This gives us approximately 14,901 Eiffel Towers.\"\n",
|
||||||
|
"}\u001b[0m\n",
|
||||||
|
"\n",
|
||||||
|
"\u001b[1m> Entering new LLMMathChain chain...\u001b[0m\n",
|
||||||
|
"The length of the Eiffel Tower is 324 meters. The distance from coast to coast in the US is approximately 4,828 kilometers. First, we need to convert 4,828 kilometers to meters, which gives us 4,828,000 meters. To find out how many Eiffel Towers we need, we can divide 4,828,000 by 324. This gives us approximately 14,901 Eiffel Towers.\u001b[32;1m\u001b[1;3m\n",
|
||||||
|
"```text\n",
|
||||||
|
"4828000 / 324\n",
|
||||||
|
"```\n",
|
||||||
|
"...numexpr.evaluate(\"4828000 / 324\")...\n",
|
||||||
|
"\u001b[0m\n",
|
||||||
|
"Answer: \u001b[33;1m\u001b[1;3m14901.234567901234\u001b[0m\n",
|
||||||
|
"\u001b[1m> Finished chain.\u001b[0m\n",
|
||||||
|
"\n",
|
||||||
|
"Observation: \u001b[38;5;200m\u001b[1;3mAnswer: 14901.234567901234\u001b[0m\n",
|
||||||
|
"Thought:\u001b[32;1m\u001b[1;3m{\n",
|
||||||
|
" \"action\": \"Final Answer\",\n",
|
||||||
|
" \"action_input\": \"If you laid the Eiffel Tower end to end, you would need approximately 14,901 Eiffel Towers to cover the US from coast to coast.\"\n",
|
||||||
|
"}\u001b[0m\n",
|
||||||
|
"\n",
|
||||||
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"query_two = \"If you laid the Eiffel Tower end to end, how many would you need cover the US from coast to coast?\"\n",
|
||||||
|
"\n",
|
||||||
|
"test_outputs_two = agent({\"input\": query_two}, return_only_outputs=False)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"This doesn't look so good. Let's try running some evaluation.\n",
|
||||||
|
"\n",
|
||||||
|
"## Evaluating the Agent\n",
|
||||||
|
"\n",
|
||||||
|
"Let's start by defining the TrajectoryEvalChain."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 5,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.evaluation.agents import TrajectoryEvalChain\n",
|
||||||
|
"\n",
|
||||||
|
"# Define chain\n",
|
||||||
|
"eval_chain = TrajectoryEvalChain.from_llm(\n",
|
||||||
|
" llm=ChatOpenAI(temperature=0, model_name=\"gpt-4\"), # Note: This must be a ChatOpenAI model\n",
|
||||||
|
" agent_tools=agent.tools,\n",
|
||||||
|
" return_reasoning=True,\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Let's try evaluating the first query."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 6,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Score from 1 to 5: 1\n",
|
||||||
|
"Reasoning: First, let's evaluate the final answer. The final answer is incorrect because it uses the volume of golf balls instead of ping pong balls. The answer is not helpful.\n",
|
||||||
|
"\n",
|
||||||
|
"Second, does the model use a logical sequence of tools to answer the question? The model only used one tool, which was the Search the Web (SerpAPI). It did not use the Calculator tool to calculate the correct volume of ping pong balls.\n",
|
||||||
|
"\n",
|
||||||
|
"Third, does the AI language model use the tools in a helpful way? The model used the Search the Web (SerpAPI) tool, but the output was not helpful because it provided information about golf balls instead of ping pong balls.\n",
|
||||||
|
"\n",
|
||||||
|
"Fourth, does the AI language model use too many steps to answer the question? The model used only one step, which is not too many. However, it should have used more steps to provide a correct answer.\n",
|
||||||
|
"\n",
|
||||||
|
"Fifth, are the appropriate tools used to answer the question? The model should have used the Search tool to find the volume of the Empire State Building and the volume of a ping pong ball. Then, it should have used the Calculator tool to calculate the number of ping pong balls needed to fill the building.\n",
|
||||||
|
"\n",
|
||||||
|
"Judgment: Given the incorrect final answer and the inappropriate use of tools, we give the model a score of 1.\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"question, steps, answer = test_outputs_one[\"input\"], test_outputs_one[\"intermediate_steps\"], test_outputs_one[\"output\"]\n",
|
||||||
|
"\n",
|
||||||
|
"evaluation = eval_chain(\n",
|
||||||
|
" inputs={\"question\": question, \"answer\": answer, \"agent_trajectory\": eval_chain.get_agent_trajectory(steps)},\n",
|
||||||
|
")\n",
|
||||||
|
"\n",
|
||||||
|
"print(\"Score from 1 to 5: \", evaluation[\"score\"])\n",
|
||||||
|
"print(\"Reasoning: \", evaluation[\"reasoning\"])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"That seems about right. Let's try the second query."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 7,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Score from 1 to 5: 3\n",
|
||||||
|
"Reasoning: i. Is the final answer helpful?\n",
|
||||||
|
"Yes, the final answer is helpful as it provides an approximate number of Eiffel Towers needed to cover the US from coast to coast.\n",
|
||||||
|
"\n",
|
||||||
|
"ii. Does the AI language use a logical sequence of tools to answer the question?\n",
|
||||||
|
"No, the AI language model does not use a logical sequence of tools. It directly uses the Calculator tool without first using the Search or Lookup tools to find the necessary information (length of the Eiffel Tower and distance from coast to coast in the US).\n",
|
||||||
|
"\n",
|
||||||
|
"iii. Does the AI language model use the tools in a helpful way?\n",
|
||||||
|
"The AI language model uses the Calculator tool in a helpful way to perform the calculation, but it should have used the Search or Lookup tools first to find the required information.\n",
|
||||||
|
"\n",
|
||||||
|
"iv. Does the AI language model use too many steps to answer the question?\n",
|
||||||
|
"No, the AI language model does not use too many steps. However, it repeats the same step twice, which is unnecessary.\n",
|
||||||
|
"\n",
|
||||||
|
"v. Are the appropriate tools used to answer the question?\n",
|
||||||
|
"Not entirely. The AI language model should have used the Search or Lookup tools to find the required information before using the Calculator tool.\n",
|
||||||
|
"\n",
|
||||||
|
"Given the above evaluation, the AI language model's performance can be scored as follows:\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"question, steps, answer = test_outputs_two[\"input\"], test_outputs_two[\"intermediate_steps\"], test_outputs_two[\"output\"]\n",
|
||||||
|
"\n",
|
||||||
|
"evaluation = eval_chain(\n",
|
||||||
|
" inputs={\"question\": question, \"answer\": answer, \"agent_trajectory\": eval_chain.get_agent_trajectory(steps)},\n",
|
||||||
|
")\n",
|
||||||
|
"\n",
|
||||||
|
"print(\"Score from 1 to 5: \", evaluation[\"score\"])\n",
|
||||||
|
"print(\"Reasoning: \", evaluation[\"reasoning\"])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"That also sounds about right. In conclusion, the TrajectoryEvalChain allows us to use GPT-4 to score both our agent's outputs and tool use in addition to giving us the reasoning behind the evaluation."
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.9.1"
|
||||||
|
},
|
||||||
|
"vscode": {
|
||||||
|
"interpreter": {
|
||||||
|
"hash": "06ba49dd587e86cdcfee66b9ffe769e1e94f0e368e54c2d6c866e38e33c0d9b1"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 2
|
||||||
|
}
|
4
langchain/evaluation/agents/__init__.py
Normal file
4
langchain/evaluation/agents/__init__.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
"""Chains for evaluating ReAct style agents."""
|
||||||
|
from langchain.evaluation.agents.trajectory_eval_chain import TrajectoryEvalChain
|
||||||
|
|
||||||
|
__all__ = ["TrajectoryEvalChain"]
|
106
langchain/evaluation/agents/trajectory_eval_chain.py
Normal file
106
langchain/evaluation/agents/trajectory_eval_chain.py
Normal file
@ -0,0 +1,106 @@
|
|||||||
|
"""A chain for evaluating ReAct style agents."""
|
||||||
|
from typing import Any, Dict, List, NamedTuple, Optional, Sequence, Tuple, Union
|
||||||
|
|
||||||
|
from langchain.chains.base import Chain
|
||||||
|
from langchain.chains.llm import LLMChain
|
||||||
|
from langchain.chat_models import ChatOpenAI
|
||||||
|
from langchain.evaluation.agents.trajectory_eval_prompt import EVAL_CHAT_PROMPT
|
||||||
|
from langchain.schema import AgentAction, BaseOutputParser, OutputParserException
|
||||||
|
from langchain.tools.base import BaseTool
|
||||||
|
|
||||||
|
|
||||||
|
class TrajectoryEval(NamedTuple):
|
||||||
|
score: int
|
||||||
|
reasoning: str
|
||||||
|
|
||||||
|
|
||||||
|
class TrajectoryOutputParser(BaseOutputParser):
|
||||||
|
def parse(self, text: str) -> TrajectoryEval:
|
||||||
|
if "Score:" not in text:
|
||||||
|
raise OutputParserException(
|
||||||
|
f"Could not find score in model eval output: {text}"
|
||||||
|
)
|
||||||
|
|
||||||
|
reasoning, score_str = text.split("Score: ")
|
||||||
|
|
||||||
|
reasoning, score_str = reasoning.strip(), score_str.strip()
|
||||||
|
|
||||||
|
score_str = next(
|
||||||
|
(char for char in score_str if char.isdigit()), "0"
|
||||||
|
) # Scan for first digit
|
||||||
|
|
||||||
|
if not 1 <= int(score_str) <= 5:
|
||||||
|
raise OutputParserException(
|
||||||
|
f"Score is not a digit in the range 1-5: {text}"
|
||||||
|
)
|
||||||
|
|
||||||
|
return TrajectoryEval(score=int(score_str), reasoning=reasoning)
|
||||||
|
|
||||||
|
|
||||||
|
class TrajectoryEvalChain(Chain):
|
||||||
|
agent_tools: List[BaseTool]
|
||||||
|
eval_chain: LLMChain
|
||||||
|
output_parser: TrajectoryOutputParser
|
||||||
|
return_reasoning: bool = False
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _tools_description(self) -> str:
|
||||||
|
return "\n\n".join(
|
||||||
|
[
|
||||||
|
f"""Tool {i}: {tool.name}
|
||||||
|
Description: {tool.description}"""
|
||||||
|
for i, tool in enumerate(self.agent_tools, 1)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def get_agent_trajectory(steps: Union[str, List[Tuple[AgentAction, str]]]) -> str:
|
||||||
|
if isinstance(steps, str):
|
||||||
|
return steps
|
||||||
|
|
||||||
|
return "\n\n".join(
|
||||||
|
[
|
||||||
|
f"""Step {i}:
|
||||||
|
Tool used: {action.tool}
|
||||||
|
Tool input: {action.tool_input}
|
||||||
|
Tool output: {output}"""
|
||||||
|
for i, (action, output) in enumerate(steps, 1)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_llm(
|
||||||
|
cls,
|
||||||
|
llm: ChatOpenAI,
|
||||||
|
agent_tools: Sequence[BaseTool],
|
||||||
|
output_parser: Optional[TrajectoryOutputParser] = None,
|
||||||
|
return_reasoning: bool = False,
|
||||||
|
) -> "TrajectoryEvalChain":
|
||||||
|
eval_chain = LLMChain(llm=llm, prompt=EVAL_CHAT_PROMPT)
|
||||||
|
return cls(
|
||||||
|
agent_tools=agent_tools,
|
||||||
|
return_reasoning=return_reasoning,
|
||||||
|
eval_chain=eval_chain,
|
||||||
|
output_parser=output_parser or TrajectoryOutputParser(),
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def input_keys(self) -> List[str]:
|
||||||
|
return ["question", "agent_trajectory", "answer"]
|
||||||
|
|
||||||
|
@property
|
||||||
|
def output_keys(self) -> List[str]:
|
||||||
|
if self.return_reasoning:
|
||||||
|
return ["score", "reasoning"]
|
||||||
|
return ["score"]
|
||||||
|
|
||||||
|
def _call(self, inputs: Dict[str, str]) -> Dict[str, Any]:
|
||||||
|
raw_output = self.eval_chain.run(
|
||||||
|
{"tool_descriptions": self._tools_description, **inputs}
|
||||||
|
)
|
||||||
|
parsed_output = self.output_parser.parse(raw_output)
|
||||||
|
|
||||||
|
if self.return_reasoning:
|
||||||
|
return {"score": parsed_output.score, "reasoning": parsed_output.reasoning}
|
||||||
|
|
||||||
|
return {"score": parsed_output.score}
|
98
langchain/evaluation/agents/trajectory_eval_prompt.py
Normal file
98
langchain/evaluation/agents/trajectory_eval_prompt.py
Normal file
@ -0,0 +1,98 @@
|
|||||||
|
"""Prompt for trajectory evaluation chain."""
|
||||||
|
# flake8: noqa
|
||||||
|
from langchain.schema import AIMessage
|
||||||
|
from langchain.schema import HumanMessage
|
||||||
|
from langchain.schema import SystemMessage
|
||||||
|
|
||||||
|
from langchain.prompts.chat import (
|
||||||
|
ChatPromptTemplate,
|
||||||
|
HumanMessagePromptTemplate,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
EVAL_TEMPLATE = """An AI language model has been given access to the following set of tools to help answer a user's question.
|
||||||
|
|
||||||
|
The tools given to the AI model are:
|
||||||
|
|
||||||
|
{tool_descriptions}
|
||||||
|
|
||||||
|
The question the human asked the AI model was: {question}
|
||||||
|
|
||||||
|
The AI language model decided to use the following set of tools to answer the question:
|
||||||
|
|
||||||
|
{agent_trajectory}
|
||||||
|
|
||||||
|
The AI language model's final answer to the question was: {answer}
|
||||||
|
|
||||||
|
Let's to do a detailed evaluation of the AI language model's answer step by step.
|
||||||
|
|
||||||
|
We consider the following criteria before giving a score from 1 to 5:
|
||||||
|
|
||||||
|
i. Is the final answer helpful?
|
||||||
|
ii. Does the AI language use a logical sequence of tools to answer the question?
|
||||||
|
iii. Does the AI language model use the tools in a helpful way?
|
||||||
|
iv. Does the AI language model use too many steps to answer the question?
|
||||||
|
v. Are the appropriate tools used to answer the question?"""
|
||||||
|
|
||||||
|
EXAMPLE_INPUT = """An AI language model has been given acces to the following set of tools to help answer a user's question.
|
||||||
|
|
||||||
|
The tools given to the AI model are:
|
||||||
|
|
||||||
|
Tool 1:
|
||||||
|
Name: Search
|
||||||
|
Description: useful for when you need to ask with search
|
||||||
|
|
||||||
|
Tool 2:
|
||||||
|
Name: Lookup
|
||||||
|
Description: useful for when you need to ask with lookup
|
||||||
|
|
||||||
|
Tool 3:
|
||||||
|
Name: Calculator
|
||||||
|
Description: useful for doing calculations
|
||||||
|
|
||||||
|
Tool 4:
|
||||||
|
Name: Search the Web (SerpAPI)
|
||||||
|
Description: useful for when you need to answer questions about current events
|
||||||
|
|
||||||
|
The question the human asked the AI model was: If laid the Statue of Liberty end to end, how many times would it stretch across the United States?
|
||||||
|
|
||||||
|
The AI language model decided to use the following set of tools to answer the question:
|
||||||
|
|
||||||
|
Step 1:
|
||||||
|
Tool used: Search the Web (SerpAPI)
|
||||||
|
Tool input: If laid the Statue of Liberty end to end, how many times would it stretch across the United States?
|
||||||
|
Tool output: The Statue of Liberty was given to the United States by France, as a symbol of the two countries' friendship. It was erected atop an American-designed ...
|
||||||
|
|
||||||
|
The AI language model's final answer to the question was: There are different ways to measure the length of the United States, but if we use the distance between the Statue of Liberty and the westernmost point of the contiguous United States (Cape Alava, Washington), which is approximately 2,857 miles (4,596 km), and assume that the Statue of Liberty is 305 feet (93 meters) tall, then the statue would stretch across the United States approximately 17.5 times if laid end to end.
|
||||||
|
|
||||||
|
Let's to do a detailed evaluation of the AI language model's answer step by step.
|
||||||
|
|
||||||
|
We consider the following criteria before giving a score from 1 to 5:
|
||||||
|
|
||||||
|
i. Is the final answer helpful?
|
||||||
|
ii. Does the AI language use a logical sequence of tools to answer the question?
|
||||||
|
iii. Does the AI language model use the tools in a helpful way?
|
||||||
|
iv. Does the AI language model use too many steps to answer the question?
|
||||||
|
v. Are the appropriate tools used to answer the question?"""
|
||||||
|
|
||||||
|
EXAMPLE_OUTPUT = """First, let's evaluate the final answer. The final uses good reasoning but is wrong. 2,857 divided by 305 is not 17.5.\
|
||||||
|
The model should have used the calculator to figure this out. Second does the model use a logical sequence of tools to answer the question?\
|
||||||
|
The way model uses the search is not helpful. The model should have used the search tool to figure the width of the US or the height of the statue.\
|
||||||
|
The model didn't use the calculator tool and gave an incorrect answer. The search API should be used for current events or specific questions.\
|
||||||
|
The tools were not used in a helpful way. The model did not use too many steps to answer the question.\
|
||||||
|
The model did not use the appropriate tools to answer the question.\
|
||||||
|
|
||||||
|
Judgment: Given the good reasoning in the final answer but otherwise poor performance, we give the model a score of 2.
|
||||||
|
|
||||||
|
Score: 2"""
|
||||||
|
|
||||||
|
EVAL_CHAT_PROMPT = ChatPromptTemplate.from_messages(
|
||||||
|
messages=[
|
||||||
|
SystemMessage(
|
||||||
|
content="You are a helpful assistant that evaluates language models."
|
||||||
|
),
|
||||||
|
HumanMessage(content=EXAMPLE_INPUT),
|
||||||
|
AIMessage(content=EXAMPLE_OUTPUT),
|
||||||
|
HumanMessagePromptTemplate.from_template(EVAL_TEMPLATE),
|
||||||
|
]
|
||||||
|
)
|
Loading…
Reference in New Issue
Block a user