LLM wrapper for Databricks (#5142)

This PR adds LLM wrapper for Databricks. It supports two endpoint types:
* serving endpoint
* cluster driver proxy app

An integration notebook is included to show how it works.


Co-authored-by: Davis Chase <130488702+dev2049@users.noreply.github.com>
Co-authored-by: Gengliang Wang <gengliang@apache.org>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
This commit is contained in:
Xiangrui Meng 2023-05-25 19:19:37 -07:00 committed by GitHub
parent 1cb6498fdb
commit aec642febb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 849 additions and 0 deletions

View File

@ -0,0 +1,523 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "5147e458-3b83-449e-9c2f-e7e1972e43fc",
"showTitle": false,
"title": ""
}
},
"source": [
"# Databricks\n",
"\n",
"The [Databricks](https://www.databricks.com/) Lakehouse Platform unifies data, analytics, and AI on one platform.\n",
"\n",
"This example notebook shows how to wrap Databricks endpoints as LLMs in LangChain.\n",
"It supports two endpoint types:\n",
"* Serving endpoint, recommended for production and development,\n",
"* Cluster driver proxy app, recommended for iteractive development."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "bf07455f-aac9-4873-a8e7-7952af0f8c82",
"showTitle": false,
"title": ""
}
},
"outputs": [],
"source": [
"from langchain.llms import Databricks"
]
},
{
"cell_type": "markdown",
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "94f6540e-40cd-4d9b-95d3-33d36f061dcc",
"showTitle": false,
"title": ""
}
},
"source": [
"## Wrapping a serving endpoint\n",
"\n",
"Prerequisites:\n",
"* An LLM was registered and deployed to [a Databricks serving endpoint](https://docs.databricks.com/machine-learning/model-serving/index.html).\n",
"* You have [\"Can Query\" permission](https://docs.databricks.com/security/auth-authz/access-control/serving-endpoint-acl.html) to the endpoint.\n",
"\n",
"The expected MLflow model signature is:\n",
" * inputs: `[{\"name\": \"prompt\", \"type\": \"string\"}, {\"name\": \"stop\", \"type\": \"list[string]\"}]`\n",
" * outputs: `[{\"type\": \"string\"}]`\n",
"\n",
"If the model signature is incompatible or you want to insert extra configs, you can set `transform_input_fn` and `transform_output_fn` accordingly."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "7496dc7a-8a1a-4ce6-9648-4f69ed25275b",
"showTitle": false,
"title": ""
}
},
"outputs": [
{
"data": {
"text/plain": [
"'I am happy to hear that you are in good health and as always, you are appreciated.'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# If running a Databricks notebook attached to an interactive cluster in \"single user\" \n",
"# or \"no isolation shared\" mode, you only need to specify the endpoint name to create \n",
"# a `Databricks` instance to query a serving endpoint in the same workspace.\n",
"llm = Databricks(endpoint_name=\"dolly\")\n",
"\n",
"llm(\"How are you?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "0c86d952-4236-4a5e-bdac-cf4e3ccf3a16",
"showTitle": false,
"title": ""
}
},
"outputs": [
{
"data": {
"text/plain": [
"'Good'"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm(\"How are you?\", stop=[\".\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "5f2507a2-addd-431d-9da5-dc2ae33783f6",
"showTitle": false,
"title": ""
}
},
"outputs": [
{
"data": {
"text/plain": [
"'I am fine. Thank you!'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Otherwise, you can manually specify the Databricks workspace hostname and personal access token \n",
"# or set `DATABRICKS_HOST` and `DATABRICKS_API_TOKEN` environment variables, respectively.\n",
"# See https://docs.databricks.com/dev-tools/auth.html#databricks-personal-access-tokens\n",
"# We strongly recommend not exposing the API token explicitly inside a notebook.\n",
"# You can use Databricks secret manager to store your API token securely.\n",
"# See https://docs.databricks.com/dev-tools/databricks-utils.html#secrets-utility-dbutilssecrets\n",
"\n",
"import os\n",
"os.environ[\"DATABRICKS_API_TOKEN\"] = dbutils.secrets.get(\"myworkspace\", \"api_token\")\n",
"\n",
"llm = Databricks(host=\"myworkspace.cloud.databricks.com\", endpoint_name=\"dolly\")\n",
"\n",
"llm(\"How are you?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "9b54f8ce-ffe5-4c47-a3f0-b4ebde524a6a",
"showTitle": false,
"title": ""
}
},
"outputs": [
{
"data": {
"text/plain": [
"'I am fine.'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# If the serving endpoint accepts extra parameters like `temperature`,\n",
"# you can set them in `model_kwargs`.\n",
"llm = Databricks(endpoint_name=\"dolly\", model_kwargs={\"temperature\": 0.1})\n",
"\n",
"llm(\"How are you?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "50f172f5-ea1f-4ceb-8cf1-20289848de7b",
"showTitle": false,
"title": ""
}
},
"outputs": [
{
"data": {
"text/plain": [
"'Im Excellent. You?'"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Use `transform_input_fn` and `transform_output_fn` if the serving endpoint\n",
"# expects a different input schema and does not return a JSON string,\n",
"# respectively, or you want to apply a prompt template on top.\n",
"\n",
"def transform_input(**request):\n",
" full_prompt = f\"\"\"{request[\"prompt\"]}\n",
" Be Concise.\n",
" \"\"\"\n",
" request[\"prompt\"] = full_prompt\n",
" return request\n",
"\n",
"llm = Databricks(endpoint_name=\"dolly\", transform_input_fn=transform_input)\n",
"\n",
"llm(\"How are you?\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "8ea49319-a041-494d-afcd-87bcf00d5efb",
"showTitle": false,
"title": ""
}
},
"source": [
"## Wrapping a cluster driver proxy app\n",
"\n",
"Prerequisites:\n",
"* An LLM loaded on a Databricks interactive cluster in \"single user\" or \"no isolation shared\" mode.\n",
"* A local HTTP server running on the driver node to serve the model at `\"/\"` using HTTP POST with JSON input/output.\n",
"* It uses a port number between `[3000, 8000]` and litens to the driver IP address or simply `0.0.0.0` instead of localhost only.\n",
"* You have \"Can Attach To\" permission to the cluster.\n",
"\n",
"The expected server schema (using JSON schema) is:\n",
"* inputs:\n",
" ```json\n",
" {\"type\": \"object\",\n",
" \"properties\": {\n",
" \"prompt\": {\"type\": \"string\"},\n",
" \"stop\": {\"type\": \"array\", \"items\": {\"type\": \"string\"}}},\n",
" \"required\": [\"prompt\"]}\n",
" ```\n",
"* outputs: `{\"type\": \"string\"}`\n",
"\n",
"If the server schema is incompatible or you want to insert extra configs, you can use `transform_input_fn` and `transform_output_fn` accordingly.\n",
"\n",
"The following is a minimal example for running a driver proxy app to serve an LLM:\n",
"\n",
"```python\n",
"from flask import Flask, request, jsonify\n",
"import torch\n",
"from transformers import pipeline, AutoTokenizer, StoppingCriteria\n",
"\n",
"model = \"databricks/dolly-v2-3b\"\n",
"tokenizer = AutoTokenizer.from_pretrained(model, padding_side=\"left\")\n",
"dolly = pipeline(model=model, tokenizer=tokenizer, trust_remote_code=True, device_map=\"auto\")\n",
"device = dolly.device\n",
"\n",
"class CheckStop(StoppingCriteria):\n",
" def __init__(self, stop=None):\n",
" super().__init__()\n",
" self.stop = stop or []\n",
" self.matched = \"\"\n",
" self.stop_ids = [tokenizer.encode(s, return_tensors='pt').to(device) for s in self.stop]\n",
" def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs):\n",
" for i, s in enumerate(self.stop_ids):\n",
" if torch.all((s == input_ids[0][-s.shape[1]:])).item():\n",
" self.matched = self.stop[i]\n",
" return True\n",
" return False\n",
"\n",
"def llm(prompt, stop=None, **kwargs):\n",
" check_stop = CheckStop(stop)\n",
" result = dolly(prompt, stopping_criteria=[check_stop], **kwargs)\n",
" return result[0][\"generated_text\"].rstrip(check_stop.matched)\n",
"\n",
"app = Flask(\"dolly\")\n",
"\n",
"@app.route('/', methods=['POST'])\n",
"def serve_llm():\n",
" resp = llm(**request.json)\n",
" return jsonify(resp)\n",
"\n",
"app.run(host=\"0.0.0.0\", port=\"7777\")\n",
"```\n",
"\n",
"Once the server is running, you can create a `Databricks` instance to wrap it as an LLM."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "e3330a01-e738-4170-a176-9954aff56442",
"showTitle": false,
"title": ""
}
},
"outputs": [
{
"data": {
"text/plain": [
"'Hello, thank you for asking. It is wonderful to hear that you are well.'"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# If running a Databricks notebook attached to the same cluster that runs the app,\n",
"# you only need to specify the driver port to create a `Databricks` instance.\n",
"llm = Databricks(cluster_driver_port=\"7777\")\n",
"\n",
"llm(\"How are you?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "39c121cf-0e44-4e31-91db-37fcac459677",
"showTitle": false,
"title": ""
}
},
"outputs": [
{
"data": {
"text/plain": [
"'I am well. You?'"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Otherwise, you can manually specify the cluster ID to use,\n",
"# as well as Databricks workspace hostname and personal access token.\n",
"\n",
"llm = Databricks(cluster_id=\"0000-000000-xxxxxxxx\", cluster_driver_port=\"7777\")\n",
"\n",
"llm(\"How are you?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "3d3de599-82fd-45e4-8d8b-bacfc49dc9ce",
"showTitle": false,
"title": ""
}
},
"outputs": [
{
"data": {
"text/plain": [
"'I am very well. It is a pleasure to meet you.'"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# If the app accepts extra parameters like `temperature`,\n",
"# you can set them in `model_kwargs`.\n",
"llm = Databricks(cluster_driver_port=\"7777\", model_kwargs={\"temperature\": 0.1})\n",
"\n",
"llm(\"How are you?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "853fae8e-8df4-41e6-9d45-7769f883fe80",
"showTitle": false,
"title": ""
}
},
"outputs": [
{
"data": {
"text/plain": [
"'I AM DOING GREAT THANK YOU.'"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Use `transform_input_fn` and `transform_output_fn` if the app\n",
"# expects a different input schema and does not return a JSON string,\n",
"# respectively, or you want to apply a prompt template on top.\n",
"\n",
"def transform_input(**request):\n",
" full_prompt = f\"\"\"{request[\"prompt\"]}\n",
" Be Concise.\n",
" \"\"\"\n",
" request[\"prompt\"] = full_prompt\n",
" return request\n",
"\n",
"def transform_output(response):\n",
" return response.upper()\n",
"\n",
"llm = Databricks(\n",
" cluster_driver_port=\"7777\",\n",
" transform_input_fn=transform_input,\n",
" transform_output_fn=transform_output)\n",
"\n",
"llm(\"How are you?\")"
]
}
],
"metadata": {
"application/vnd.databricks.v1+notebook": {
"dashboards": [],
"language": "python",
"notebookMetadata": {
"pythonIndentUnit": 2
},
"notebookName": "databricks",
"widgets": {}
},
"kernelspec": {
"display_name": "llm",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.10"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@ -11,6 +11,7 @@ from langchain.llms.beam import Beam
from langchain.llms.cerebriumai import CerebriumAI
from langchain.llms.cohere import Cohere
from langchain.llms.ctransformers import CTransformers
from langchain.llms.databricks import Databricks
from langchain.llms.deepinfra import DeepInfra
from langchain.llms.fake import FakeListLLM
from langchain.llms.forefrontai import ForefrontAI
@ -50,6 +51,7 @@ __all__ = [
"CerebriumAI",
"Cohere",
"CTransformers",
"Databricks",
"DeepInfra",
"ForefrontAI",
"GooglePalm",
@ -95,6 +97,7 @@ type_to_cls_dict: Dict[str, Type[BaseLLM]] = {
"cerebriumai": CerebriumAI,
"cohere": Cohere,
"ctransformers": CTransformers,
"databricks": Databricks,
"deepinfra": DeepInfra,
"forefrontai": ForefrontAI,
"google_palm": GooglePalm,

View File

@ -0,0 +1,323 @@
import os
from abc import ABC, abstractmethod
from typing import Any, Callable, Dict, List, Optional
import requests
from pydantic import BaseModel, Extra, Field, PrivateAttr, root_validator, validator
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
__all__ = ["Databricks"]
class _DatabricksClientBase(BaseModel, ABC):
"""A base JSON API client that talks to Databricks."""
api_url: str
api_token: str
def post_raw(self, request: Any) -> Any:
headers = {"Authorization": f"Bearer {self.api_token}"}
response = requests.post(self.api_url, headers=headers, json=request)
# TODO: error handling and automatic retries
if not response.ok:
raise ValueError(f"HTTP {response.status_code} error: {response.text}")
return response.json()
@abstractmethod
def post(self, request: Any) -> Any:
...
class _DatabricksServingEndpointClient(_DatabricksClientBase):
"""An API client that talks to a Databricks serving endpoint."""
host: str
endpoint_name: str
@root_validator(pre=True)
def set_api_url(cls, values: Dict[str, Any]) -> Dict[str, Any]:
if "api_url" not in values:
host = values["host"]
endpoint_name = values["endpoint_name"]
api_url = f"https://{host}/serving-endpoints/{endpoint_name}/invocations"
values["api_url"] = api_url
return values
def post(self, request: Any) -> Any:
# See https://docs.databricks.com/machine-learning/model-serving/score-model-serving-endpoints.html
wrapped_request = {"dataframe_records": [request]}
response = self.post_raw(wrapped_request)["predictions"]
# For a single-record query, the result is not a list.
if isinstance(response, list):
response = response[0]
return response
class _DatabricksClusterDriverProxyClient(_DatabricksClientBase):
"""An API client that talks to a Databricks cluster driver proxy app."""
host: str
cluster_id: str
cluster_driver_port: str
@root_validator(pre=True)
def set_api_url(cls, values: Dict[str, Any]) -> Dict[str, Any]:
if "api_url" not in values:
host = values["host"]
cluster_id = values["cluster_id"]
port = values["cluster_driver_port"]
api_url = f"https://{host}/driver-proxy-api/o/0/{cluster_id}/{port}"
values["api_url"] = api_url
return values
def post(self, request: Any) -> Any:
return self.post_raw(request)
def get_repl_context() -> Any:
"""Gets the notebook REPL context if running inside a Databricks notebook.
Returns None otherwise.
"""
try:
from dbruntime.databricks_repl_context import get_context
return get_context()
except ImportError:
raise ValueError(
"Cannot access dbruntime, not running inside a Databricks notebook."
)
def get_default_host() -> str:
"""Gets the default Databricks workspace hostname.
Raises an error if the hostname cannot be automatically determined.
"""
host = os.getenv("DATABRICKS_HOST")
if not host:
try:
host = get_repl_context().browserHostName
if not host:
raise ValueError("context doesn't contain browserHostName.")
except Exception as e:
raise ValueError(
"host was not set and cannot be automatically inferred. Set "
f"environment variable 'DATABRICKS_HOST'. Received error: {e}"
)
# TODO: support Databricks CLI profile
host = host.lstrip("https://").lstrip("http://").rstrip("/")
return host
def get_default_api_token() -> str:
"""Gets the default Databricks personal access token.
Raises an error if the token cannot be automatically determined.
"""
if api_token := os.getenv("DATABRICKS_API_TOKEN"):
return api_token
try:
api_token = get_repl_context().apiToken
if not api_token:
raise ValueError("context doesn't contain apiToken.")
except Exception as e:
raise ValueError(
"api_token was not set and cannot be automatically inferred. Set "
f"environment variable 'DATABRICKS_API_TOKEN'. Received error: {e}"
)
# TODO: support Databricks CLI profile
return api_token
class Databricks(LLM):
"""LLM wrapper around a Databricks serving endpoint or a cluster driver proxy app.
It supports two endpoint types:
* **Serving endpoint** (recommended for both production and development).
We assume that an LLM was registered and deployed to a serving endpoint.
To wrap it as an LLM you must have "Can Query" permission to the endpoint.
Set ``endpoint_name`` accordingly and do not set ``cluster_id`` and
``cluster_driver_port``.
The expected model signature is:
* inputs::
[{"name": "prompt", "type": "string"},
{"name": "stop", "type": "list[string]"}]
* outputs: ``[{"type": "string"}]``
* **Cluster driver proxy app** (recommended for interactive development).
One can load an LLM on a Databricks interactive cluster and start a local HTTP
server on the driver node to serve the model at ``/`` using HTTP POST method
with JSON input/output.
Please use a port number between ``[3000, 8000]`` and let the server listen to
the driver IP address or simply ``0.0.0.0`` instead of localhost only.
To wrap it as an LLM you must have "Can Attach To" permission to the cluster.
Set ``cluster_id`` and ``cluster_driver_port`` and do not set ``endpoint_name``.
The expected server schema (using JSON schema) is:
* inputs::
{"type": "object",
"properties": {
"prompt": {"type": "string"},
"stop": {"type": "array", "items": {"type": "string"}}},
"required": ["prompt"]}`
* outputs: ``{"type": "string"}``
If the endpoint model signature is different or you want to set extra params,
you can use `transform_input_fn` and `transform_output_fn` to apply necessary
transformations before and after the query.
"""
host: str = Field(default_factory=get_default_host)
"""Databricks workspace hostname.
If not provided, the default value is determined by
* the ``DATABRICKS_HOST`` environment variable if present, or
* the hostname of the current Databricks workspace if running inside
a Databricks notebook attached to an interactive cluster in "single user"
or "no isolation shared" mode.
"""
api_token: str = Field(default_factory=get_default_api_token)
"""Databricks personal access token.
If not provided, the default value is determined by
* the ``DATABRICKS_API_TOKEN`` environment variable if present, or
* an automatically generated temporary token if running inside a Databricks
notebook attached to an interactive cluster in "single user" or
"no isolation shared" mode.
"""
endpoint_name: Optional[str] = None
"""Name of the model serving endpont.
You must specify the endpoint name to connect to a model serving endpoint.
You must not set both ``endpoint_name`` and ``cluster_id``.
"""
cluster_id: Optional[str] = None
"""ID of the cluster if connecting to a cluster driver proxy app.
If neither ``endpoint_name`` nor ``cluster_id`` is not provided and the code runs
inside a Databricks notebook attached to an interactive cluster in "single user"
or "no isolation shared" mode, the current cluster ID is used as default.
You must not set both ``endpoint_name`` and ``cluster_id``.
"""
cluster_driver_port: Optional[str] = None
"""The port number used by the HTTP server running on the cluster driver node.
The server should listen on the driver IP address or simply ``0.0.0.0`` to connect.
We recommend the server using a port number between ``[3000, 8000]``.
"""
model_kwargs: Optional[Dict[str, Any]] = None
"""Extra parameters to pass to the endpoint."""
transform_input_fn: Optional[Callable] = None
"""A function that transforms ``{prompt, stop, **kwargs}`` into a JSON-compatible
request object that the endpoint accepts.
For example, you can apply a prompt template to the input prompt.
"""
transform_output_fn: Optional[Callable[..., str]] = None
"""A function that transforms the output from the endpoint to the generated text.
"""
_client: _DatabricksClientBase = PrivateAttr()
class Config:
extra = Extra.forbid
underscore_attrs_are_private = True
@validator("cluster_id", always=True)
def set_cluster_id(cls, v: Any, values: Dict[str, Any]) -> Optional[str]:
if v and values["endpoint_name"]:
raise ValueError("Cannot set both endpoint_name and cluster_id.")
elif values["endpoint_name"]:
return None
elif v:
return v
else:
try:
if v := get_repl_context().clusterId:
return v
raise ValueError("Context doesn't contain clusterId.")
except Exception as e:
raise ValueError(
"Neither endpoint_name nor cluster_id was set. "
"And the cluster_id cannot be automatically determined. Received"
f" error: {e}"
)
@validator("cluster_driver_port", always=True)
def set_cluster_driver_port(cls, v: Any, values: Dict[str, Any]) -> Optional[str]:
if v and values["endpoint_name"]:
raise ValueError("Cannot set both endpoint_name and cluster_driver_port.")
elif values["endpoint_name"]:
return None
elif v is None:
raise ValueError(
"Must set cluster_driver_port to connect to a cluster driver."
)
elif int(v) <= 0:
raise ValueError(f"Invalid cluster_driver_port: {v}")
else:
return v
@validator("model_kwargs", always=True)
def set_model_kwargs(cls, v: Optional[Dict[str, Any]]) -> Optional[Dict[str, Any]]:
if v:
assert "prompt" not in v, "model_kwargs must not contain key 'prompt'"
assert "stop" not in v, "model_kwargs must not contain key 'stop'"
return v
def __init__(self, **data: Any):
super().__init__(**data)
if self.endpoint_name:
self._client = _DatabricksServingEndpointClient(
host=self.host,
api_token=self.api_token,
endpoint_name=self.endpoint_name,
)
elif self.cluster_id and self.cluster_driver_port:
self._client = _DatabricksClusterDriverProxyClient(
host=self.host,
api_token=self.api_token,
cluster_id=self.cluster_id,
cluster_driver_port=self.cluster_driver_port,
)
else:
raise ValueError(
"Must specify either endpoint_name or cluster_id/cluster_driver_port."
)
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "databricks"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
"""Queries the LLM endpoint with the given prompt and stop sequence."""
# TODO: support callbacks
request = {"prompt": prompt, "stop": stop}
if self.model_kwargs:
request.update(self.model_kwargs)
if self.transform_input_fn:
request = self.transform_input_fn(**request)
response = self._client.post(request)
if self.transform_output_fn:
response = self.transform_output_fn(response)
return response