forked from Archives/langchain
Update Tool Input (#3103)
- Remove dynamic model creation in the `args()` property. _Only infer for the decorator (and add an argument to NOT infer if someone wishes to only pass as a string)_ - Update the validation example to make it less likely to be misinterpreted as a "safe" way to run a repl There is one example of "Multi-argument tools" in the custom_tools.ipynb from yesterday, but we could add more. The output parsing for the base MRKL agent hasn't been adapted to handle structured args at this point in time --------- Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This commit is contained in:
parent
19116010ee
commit
90ef705ced
@ -12,6 +12,7 @@
|
|||||||
"- name (str), is required and must be unique within a set of tools provided to an agent\n",
|
"- name (str), is required and must be unique within a set of tools provided to an agent\n",
|
||||||
"- description (str), is optional but recommended, as it is used by an agent to determine tool use\n",
|
"- description (str), is optional but recommended, as it is used by an agent to determine tool use\n",
|
||||||
"- return_direct (bool), defaults to False\n",
|
"- return_direct (bool), defaults to False\n",
|
||||||
|
"- args_schema (Pydantic BaseModel), is optional but recommended, can be used to provide more information or validation for expected parameters.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"The function that should be called when the tool is selected should return a single string.\n",
|
"The function that should be called when the tool is selected should return a single string.\n",
|
||||||
"\n",
|
"\n",
|
||||||
@ -91,12 +92,22 @@
|
|||||||
" func=search.run,\n",
|
" func=search.run,\n",
|
||||||
" description=\"useful for when you need to answer questions about current events\"\n",
|
" description=\"useful for when you need to answer questions about current events\"\n",
|
||||||
" ),\n",
|
" ),\n",
|
||||||
|
"]\n",
|
||||||
|
"# You can also define an args_schema to provide more information about inputs\n",
|
||||||
|
"from pydantic import BaseModel, Field\n",
|
||||||
|
"\n",
|
||||||
|
"class CalculatorInput(BaseModel):\n",
|
||||||
|
" query: str = Field(description=\"should be a math expression\")\n",
|
||||||
|
" \n",
|
||||||
|
"\n",
|
||||||
|
"tools.append(\n",
|
||||||
" Tool(\n",
|
" Tool(\n",
|
||||||
" name=\"Calculator\",\n",
|
" name=\"Calculator\",\n",
|
||||||
" func=llm_math_chain.run,\n",
|
" func=llm_math_chain.run,\n",
|
||||||
" description=\"useful for when you need to answer questions about math\"\n",
|
" description=\"useful for when you need to answer questions about math\",\n",
|
||||||
|
" args_schema=CalculatorInput\n",
|
||||||
" )\n",
|
" )\n",
|
||||||
"]"
|
")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -130,22 +141,20 @@
|
|||||||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
||||||
"\u001b[32;1m\u001b[1;3mI need to find out Leo DiCaprio's girlfriend's name and her age\n",
|
"\u001b[32;1m\u001b[1;3mI need to find out Leo DiCaprio's girlfriend's name and her age\n",
|
||||||
"Action: Search\n",
|
"Action: Search\n",
|
||||||
"Action Input: \"Leo DiCaprio girlfriend\"\u001b[0m\u001b[36;1m\u001b[1;3mI draw the lime at going to get a Mohawk, though.\" DiCaprio broke up with girlfriend Camila Morrone, 25, in the summer of 2022, after dating for four years. He's since been linked to another famous supermodel – Gigi Hadid.\u001b[0m\u001b[32;1m\u001b[1;3mI need to find out Gigi Hadid's age\n",
|
"Action Input: \"Leo DiCaprio girlfriend\"\u001b[0m\u001b[36;1m\u001b[1;3mDiCaprio broke up with girlfriend Camila Morrone, 25, in the summer of 2022, after dating for four years.\u001b[0m\u001b[32;1m\u001b[1;3mI need to find out Camila Morrone's current age\n",
|
||||||
"Action: Search\n",
|
|
||||||
"Action Input: \"Gigi Hadid age\"\u001b[0m\u001b[36;1m\u001b[1;3m27 years\u001b[0m\u001b[32;1m\u001b[1;3mI need to calculate her age raised to the 0.43 power\n",
|
|
||||||
"Action: Calculator\n",
|
"Action: Calculator\n",
|
||||||
"Action Input: 27^(0.43)\u001b[0m\n",
|
"Action Input: 25^(0.43)\u001b[0m\n",
|
||||||
"\n",
|
"\n",
|
||||||
"\u001b[1m> Entering new LLMMathChain chain...\u001b[0m\n",
|
"\u001b[1m> Entering new LLMMathChain chain...\u001b[0m\n",
|
||||||
"27^(0.43)\u001b[32;1m\u001b[1;3m```text\n",
|
"25^(0.43)\u001b[32;1m\u001b[1;3m```text\n",
|
||||||
"27**(0.43)\n",
|
"25**(0.43)\n",
|
||||||
"```\n",
|
"```\n",
|
||||||
"...numexpr.evaluate(\"27**(0.43)\")...\n",
|
"...numexpr.evaluate(\"25**(0.43)\")...\n",
|
||||||
"\u001b[0m\n",
|
"\u001b[0m\n",
|
||||||
"Answer: \u001b[33;1m\u001b[1;3m4.125593352125936\u001b[0m\n",
|
"Answer: \u001b[33;1m\u001b[1;3m3.991298452658078\u001b[0m\n",
|
||||||
"\u001b[1m> Finished chain.\u001b[0m\n",
|
"\u001b[1m> Finished chain.\u001b[0m\n",
|
||||||
"\u001b[33;1m\u001b[1;3mAnswer: 4.125593352125936\u001b[0m\u001b[32;1m\u001b[1;3mI now know the final answer\n",
|
"\u001b[33;1m\u001b[1;3mAnswer: 3.991298452658078\u001b[0m\u001b[32;1m\u001b[1;3mI now know the final answer\n",
|
||||||
"Final Answer: 4.125593352125936\u001b[0m\n",
|
"Final Answer: 3.991298452658078\u001b[0m\n",
|
||||||
"\n",
|
"\n",
|
||||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||||
]
|
]
|
||||||
@ -153,7 +162,7 @@
|
|||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"text/plain": [
|
"text/plain": [
|
||||||
"'4.125593352125936'"
|
"'3.991298452658078'"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"execution_count": 5,
|
"execution_count": 5,
|
||||||
@ -197,6 +206,7 @@
|
|||||||
"class CustomCalculatorTool(BaseTool):\n",
|
"class CustomCalculatorTool(BaseTool):\n",
|
||||||
" name = \"Calculator\"\n",
|
" name = \"Calculator\"\n",
|
||||||
" description = \"useful for when you need to answer questions about math\"\n",
|
" description = \"useful for when you need to answer questions about math\"\n",
|
||||||
|
" args_schema=CalculatorInput\n",
|
||||||
"\n",
|
"\n",
|
||||||
" def _run(self, query: str) -> str:\n",
|
" def _run(self, query: str) -> str:\n",
|
||||||
" \"\"\"Use the tool.\"\"\"\n",
|
" \"\"\"Use the tool.\"\"\"\n",
|
||||||
@ -248,9 +258,7 @@
|
|||||||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
||||||
"\u001b[32;1m\u001b[1;3mI need to find out Leo DiCaprio's girlfriend's name and her age\n",
|
"\u001b[32;1m\u001b[1;3mI need to find out Leo DiCaprio's girlfriend's name and her age\n",
|
||||||
"Action: Search\n",
|
"Action: Search\n",
|
||||||
"Action Input: \"Leo DiCaprio girlfriend\"\u001b[0m\u001b[36;1m\u001b[1;3mI draw the lime at going to get a Mohawk, though.\" DiCaprio broke up with girlfriend Camila Morrone, 25, in the summer of 2022, after dating for four years. He's since been linked to another famous supermodel – Gigi Hadid.\u001b[0m\u001b[32;1m\u001b[1;3mI now know Leo DiCaprio's girlfriend's name and that he's currently linked to Gigi Hadid. I need to find out Camila Morrone's age.\n",
|
"Action Input: \"Leo DiCaprio girlfriend\"\u001b[0m\u001b[36;1m\u001b[1;3mDiCaprio broke up with girlfriend Camila Morrone, 25, in the summer of 2022, after dating for four years.\u001b[0m\u001b[32;1m\u001b[1;3mI need to find out Camila Morrone's current age\n",
|
||||||
"Action: Search\n",
|
|
||||||
"Action Input: \"Camila Morrone age\"\u001b[0m\u001b[36;1m\u001b[1;3m25 years\u001b[0m\u001b[32;1m\u001b[1;3mI have Camila Morrone's age. I need to calculate her age raised to the 0.43 power.\n",
|
|
||||||
"Action: Calculator\n",
|
"Action: Calculator\n",
|
||||||
"Action Input: 25^(0.43)\u001b[0m\n",
|
"Action Input: 25^(0.43)\u001b[0m\n",
|
||||||
"\n",
|
"\n",
|
||||||
@ -262,8 +270,8 @@
|
|||||||
"\u001b[0m\n",
|
"\u001b[0m\n",
|
||||||
"Answer: \u001b[33;1m\u001b[1;3m3.991298452658078\u001b[0m\n",
|
"Answer: \u001b[33;1m\u001b[1;3m3.991298452658078\u001b[0m\n",
|
||||||
"\u001b[1m> Finished chain.\u001b[0m\n",
|
"\u001b[1m> Finished chain.\u001b[0m\n",
|
||||||
"\u001b[33;1m\u001b[1;3mAnswer: 3.991298452658078\u001b[0m\u001b[32;1m\u001b[1;3mI now know the answer to the original question.\n",
|
"\u001b[33;1m\u001b[1;3mAnswer: 3.991298452658078\u001b[0m\u001b[32;1m\u001b[1;3mI now know the final answer\n",
|
||||||
"Final Answer: Camila Morrone's current age raised to the 0.43 power is approximately 3.99.\u001b[0m\n",
|
"Final Answer: 3.991298452658078\u001b[0m\n",
|
||||||
"\n",
|
"\n",
|
||||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||||
]
|
]
|
||||||
@ -271,7 +279,7 @@
|
|||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"text/plain": [
|
"text/plain": [
|
||||||
"\"Camila Morrone's current age raised to the 0.43 power is approximately 3.99.\""
|
"'3.991298452658078'"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"execution_count": 9,
|
"execution_count": 9,
|
||||||
@ -321,7 +329,7 @@
|
|||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"text/plain": [
|
"text/plain": [
|
||||||
"Tool(name='search_api', description='search_api(query: str) -> str - Searches the API for the query.', args_schema=<class 'pydantic.main.ArgsModel'>, return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x124346f10>, func=<function search_api at 0x16ad6e020>, coroutine=None)"
|
"Tool(name='search_api', description='search_api(query: str) -> str - Searches the API for the query.', args_schema=<class 'pydantic.main.SearchApi'>, return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x12748c4c0>, func=<function search_api at 0x16bd664c0>, coroutine=None)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"execution_count": 11,
|
"execution_count": 11,
|
||||||
@ -365,7 +373,7 @@
|
|||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"text/plain": [
|
"text/plain": [
|
||||||
"Tool(name='search', description='search(query: str) -> str - Searches the API for the query.', args_schema=<class 'pydantic.main.ArgsModel'>, return_direct=True, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x124346f10>, func=<function search_api at 0x16ad6d3a0>, coroutine=None)"
|
"Tool(name='search', description='search(query: str) -> str - Searches the API for the query.', args_schema=<class 'pydantic.main.SearchApi'>, return_direct=True, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x12748c4c0>, func=<function search_api at 0x16bd66310>, coroutine=None)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"execution_count": 13,
|
"execution_count": 13,
|
||||||
@ -377,6 +385,51 @@
|
|||||||
"search_api"
|
"search_api"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "de34a6a3",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"You can also provide `args_schema` to provide more information about the argument"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 14,
|
||||||
|
"id": "f3a5c106",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"class SearchInput(BaseModel):\n",
|
||||||
|
" query: str = Field(description=\"should be a search query\")\n",
|
||||||
|
" \n",
|
||||||
|
"@tool(\"search\", return_direct=True, args_schema=SearchInput)\n",
|
||||||
|
"def search_api(query: str) -> str:\n",
|
||||||
|
" \"\"\"Searches the API for the query.\"\"\"\n",
|
||||||
|
" return \"Results\""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 15,
|
||||||
|
"id": "7914ba6b",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"Tool(name='search', description='search(query: str) -> str - Searches the API for the query.', args_schema=<class '__main__.SearchInput'>, return_direct=True, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x12748c4c0>, func=<function search_api at 0x16bcf0ee0>, coroutine=None)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 15,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"search_api"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "1d0430d6",
|
"id": "1d0430d6",
|
||||||
@ -784,7 +837,7 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.11.2"
|
"version": "3.9.1"
|
||||||
},
|
},
|
||||||
"vscode": {
|
"vscode": {
|
||||||
"interpreter": {
|
"interpreter": {
|
||||||
|
@ -19,13 +19,12 @@
|
|||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from langchain.agents import initialize_agent, Tool\n",
|
"from typing import Any, Dict\n",
|
||||||
"from langchain.agents import AgentType\n",
|
"\n",
|
||||||
|
"from langchain.agents import AgentType, initialize_agent\n",
|
||||||
"from langchain.llms import OpenAI\n",
|
"from langchain.llms import OpenAI\n",
|
||||||
"from langchain.tools.python.tool import PythonREPLTool\n",
|
"from langchain.tools.requests.tool import RequestsGetTool, TextRequestsWrapper\n",
|
||||||
"from pydantic import BaseModel\n",
|
"from pydantic import BaseModel, Field, root_validator\n"
|
||||||
"from pydantic import Field, root_validator\n",
|
|
||||||
"from typing import Dict, Any"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -42,22 +41,20 @@
|
|||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 3,
|
"execution_count": 3,
|
||||||
"metadata": {
|
"metadata": {},
|
||||||
"tags": []
|
"outputs": [
|
||||||
},
|
{
|
||||||
"outputs": [],
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"\n",
|
||||||
|
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1\u001b[0m\n",
|
||||||
|
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"class ToolInputModel(BaseModel):\n",
|
"!pip install tldextract > /dev/null"
|
||||||
" query: str = Field(...)\n",
|
|
||||||
" \n",
|
|
||||||
" @root_validator\n",
|
|
||||||
" def validate_query(cls, values: Dict[str, Any]) -> Dict:\n",
|
|
||||||
" # Note: this is NOT a safe REPL! This is used for instructive purposes only\n",
|
|
||||||
" if \"import os\" in values[\"query\"]:\n",
|
|
||||||
" raise ValueError(\"'import os' not permitted in this python REPL.\")\n",
|
|
||||||
" return values\n",
|
|
||||||
" \n",
|
|
||||||
"tool = PythonREPLTool(args_schema=ToolInputModel)"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -68,7 +65,27 @@
|
|||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"agent = initialize_agent([tool], llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)"
|
"import tldextract\n",
|
||||||
|
"\n",
|
||||||
|
"_APPROVED_DOMAINS = {\n",
|
||||||
|
" \"langchain\",\n",
|
||||||
|
" \"wikipedia\",\n",
|
||||||
|
"}\n",
|
||||||
|
"\n",
|
||||||
|
"class ToolInputSchema(BaseModel):\n",
|
||||||
|
"\n",
|
||||||
|
" url: str = Field(...)\n",
|
||||||
|
" \n",
|
||||||
|
" @root_validator\n",
|
||||||
|
" def validate_query(cls, values: Dict[str, Any]) -> Dict:\n",
|
||||||
|
" url = values[\"url\"]\n",
|
||||||
|
" domain = tldextract.extract(url).domain\n",
|
||||||
|
" if domain not in _APPROVED_DOMAINS:\n",
|
||||||
|
" raise ValueError(f\"Domain {domain} is not on the approved list:\"\n",
|
||||||
|
" f\" {sorted(_APPROVED_DOMAINS)}\")\n",
|
||||||
|
" return values\n",
|
||||||
|
" \n",
|
||||||
|
"tool = RequestsGetTool(args_schema=ToolInputSchema, requests_wrapper=TextRequestsWrapper())"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -77,40 +94,9 @@
|
|||||||
"metadata": {
|
"metadata": {
|
||||||
"tags": []
|
"tags": []
|
||||||
},
|
},
|
||||||
"outputs": [
|
"outputs": [],
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"\n",
|
|
||||||
"\n",
|
|
||||||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
|
||||||
"\u001b[32;1m\u001b[1;3m I need to define a function that adds two numbers\n",
|
|
||||||
"Action: Python REPL\n",
|
|
||||||
"Action Input: def add_two_numbers(a, b):\n",
|
|
||||||
" return a + b\u001b[0m\u001b[36;1m\u001b[1;3m\u001b[0m\u001b[32;1m\u001b[1;3m I need to call the function\n",
|
|
||||||
"Action: Python REPL\n",
|
|
||||||
"Action Input: print(add_two_numbers(2, 2))\u001b[0m\u001b[36;1m\u001b[1;3m4\n",
|
|
||||||
"\u001b[0m\u001b[32;1m\u001b[1;3m I now know the final answer\n",
|
|
||||||
"Final Answer: 4\u001b[0m\n",
|
|
||||||
"\n",
|
|
||||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"text/plain": [
|
|
||||||
"'4'"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"execution_count": 5,
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "execute_result"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
"source": [
|
||||||
"# This will succeed, since there aren't any arguments that will be triggered during validation\n",
|
"agent = initialize_agent([tool], llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=False)"
|
||||||
"agent.run(\"Run a python function that adds 2 and 2\")"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -124,38 +110,46 @@
|
|||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"\n",
|
"The main title of langchain.com is \"LANG CHAIN 🦜️🔗 Official Home Page\"\n"
|
||||||
"\n",
|
|
||||||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
|
||||||
"\u001b[32;1m\u001b[1;3m I need to import os and then list the dir\n",
|
|
||||||
"Action: Python REPL\n",
|
|
||||||
"Action Input: import os; print(os.listdir())\u001b[0m"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"ename": "ValidationError",
|
|
||||||
"evalue": "1 validation error for ToolInputModel\n__root__\n 'import os' not (type=value_error)",
|
|
||||||
"output_type": "error",
|
|
||||||
"traceback": [
|
|
||||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
|
||||||
"\u001b[0;31mValidationError\u001b[0m Traceback (most recent call last)",
|
|
||||||
"Cell \u001b[0;32mIn[6], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43magent\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mRun a python function that imports os and lists the dir\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
|
|
||||||
"File \u001b[0;32m~/code/lc/lckg/langchain/chains/base.py:213\u001b[0m, in \u001b[0;36mChain.run\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 211\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(args) \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[1;32m 212\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`run` supports only one positional argument.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 213\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m[\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moutput_keys[\u001b[38;5;241m0\u001b[39m]]\n\u001b[1;32m 215\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kwargs \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m args:\n\u001b[1;32m 216\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m(kwargs)[\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moutput_keys[\u001b[38;5;241m0\u001b[39m]]\n",
|
|
||||||
"File \u001b[0;32m~/code/lc/lckg/langchain/chains/base.py:116\u001b[0m, in \u001b[0;36mChain.__call__\u001b[0;34m(self, inputs, return_only_outputs)\u001b[0m\n\u001b[1;32m 114\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (\u001b[38;5;167;01mKeyboardInterrupt\u001b[39;00m, \u001b[38;5;167;01mException\u001b[39;00m) \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 115\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcallback_manager\u001b[38;5;241m.\u001b[39mon_chain_error(e, verbose\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mverbose)\n\u001b[0;32m--> 116\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 117\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcallback_manager\u001b[38;5;241m.\u001b[39mon_chain_end(outputs, verbose\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mverbose)\n\u001b[1;32m 118\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mprep_outputs(inputs, outputs, return_only_outputs)\n",
|
|
||||||
"File \u001b[0;32m~/code/lc/lckg/langchain/chains/base.py:113\u001b[0m, in \u001b[0;36mChain.__call__\u001b[0;34m(self, inputs, return_only_outputs)\u001b[0m\n\u001b[1;32m 107\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcallback_manager\u001b[38;5;241m.\u001b[39mon_chain_start(\n\u001b[1;32m 108\u001b[0m {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mname\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m},\n\u001b[1;32m 109\u001b[0m inputs,\n\u001b[1;32m 110\u001b[0m verbose\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mverbose,\n\u001b[1;32m 111\u001b[0m )\n\u001b[1;32m 112\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 113\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call\u001b[49m\u001b[43m(\u001b[49m\u001b[43minputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 114\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (\u001b[38;5;167;01mKeyboardInterrupt\u001b[39;00m, \u001b[38;5;167;01mException\u001b[39;00m) \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 115\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcallback_manager\u001b[38;5;241m.\u001b[39mon_chain_error(e, verbose\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mverbose)\n",
|
|
||||||
"File \u001b[0;32m~/code/lc/lckg/langchain/agents/agent.py:792\u001b[0m, in \u001b[0;36mAgentExecutor._call\u001b[0;34m(self, inputs)\u001b[0m\n\u001b[1;32m 790\u001b[0m \u001b[38;5;66;03m# We now enter the agent loop (until it returns something).\u001b[39;00m\n\u001b[1;32m 791\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_should_continue(iterations, time_elapsed):\n\u001b[0;32m--> 792\u001b[0m next_step_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_take_next_step\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 793\u001b[0m \u001b[43m \u001b[49m\u001b[43mname_to_tool_map\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcolor_mapping\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mintermediate_steps\u001b[49m\n\u001b[1;32m 794\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 795\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(next_step_output, AgentFinish):\n\u001b[1;32m 796\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_return(next_step_output, intermediate_steps)\n",
|
|
||||||
"File \u001b[0;32m~/code/lc/lckg/langchain/agents/agent.py:695\u001b[0m, in \u001b[0;36mAgentExecutor._take_next_step\u001b[0;34m(self, name_to_tool_map, color_mapping, inputs, intermediate_steps)\u001b[0m\n\u001b[1;32m 693\u001b[0m tool_run_kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mllm_prefix\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 694\u001b[0m \u001b[38;5;66;03m# We then call the tool on the tool input to get an observation\u001b[39;00m\n\u001b[0;32m--> 695\u001b[0m observation \u001b[38;5;241m=\u001b[39m \u001b[43mtool\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 696\u001b[0m \u001b[43m \u001b[49m\u001b[43magent_action\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtool_input\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 697\u001b[0m \u001b[43m \u001b[49m\u001b[43mverbose\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mverbose\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 698\u001b[0m \u001b[43m \u001b[49m\u001b[43mcolor\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcolor\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 699\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mtool_run_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 700\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 701\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 702\u001b[0m tool_run_kwargs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39magent\u001b[38;5;241m.\u001b[39mtool_run_logging_kwargs()\n",
|
|
||||||
"File \u001b[0;32m~/code/lc/lckg/langchain/tools/base.py:146\u001b[0m, in \u001b[0;36mBaseTool.run\u001b[0;34m(self, tool_input, verbose, start_color, color, **kwargs)\u001b[0m\n\u001b[1;32m 137\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mrun\u001b[39m(\n\u001b[1;32m 138\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 139\u001b[0m tool_input: Union[\u001b[38;5;28mstr\u001b[39m, Dict],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 143\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any,\n\u001b[1;32m 144\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28mstr\u001b[39m:\n\u001b[1;32m 145\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Run the tool.\"\"\"\u001b[39;00m\n\u001b[0;32m--> 146\u001b[0m run_input \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_parse_input\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtool_input\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 147\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mverbose \u001b[38;5;129;01mand\u001b[39;00m verbose \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 148\u001b[0m verbose_ \u001b[38;5;241m=\u001b[39m verbose\n",
|
|
||||||
"File \u001b[0;32m~/code/lc/lckg/langchain/tools/base.py:112\u001b[0m, in \u001b[0;36mBaseTool._parse_input\u001b[0;34m(self, tool_input)\u001b[0m\n\u001b[1;32m 110\u001b[0m tool_input \u001b[38;5;241m=\u001b[39m {field_name: tool_input}\n\u001b[1;32m 111\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m pydantic_input_type \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 112\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mpydantic_input_type\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparse_obj\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtool_input\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 113\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 114\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 115\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124margs_schema required for tool \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mname\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m in order to\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 116\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m accept input of type \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mtype\u001b[39m(tool_input)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 117\u001b[0m )\n",
|
|
||||||
"File \u001b[0;32m~/code/lc/lckg/.venv/lib/python3.11/site-packages/pydantic/main.py:526\u001b[0m, in \u001b[0;36mpydantic.main.BaseModel.parse_obj\u001b[0;34m()\u001b[0m\n",
|
|
||||||
"File \u001b[0;32m~/code/lc/lckg/.venv/lib/python3.11/site-packages/pydantic/main.py:341\u001b[0m, in \u001b[0;36mpydantic.main.BaseModel.__init__\u001b[0;34m()\u001b[0m\n",
|
|
||||||
"\u001b[0;31mValidationError\u001b[0m: 1 validation error for ToolInputModel\n__root__\n 'import os' not (type=value_error)"
|
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"# This will fail, because the attempt to import os will trigger a validation error\n",
|
"# This will succeed, since there aren't any arguments that will be triggered during validation\n",
|
||||||
"agent.run(\"Run a python function that imports os and lists the dir\")"
|
"answer = agent.run(\"What's the main title on langchain.com?\")\n",
|
||||||
|
"print(answer)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 7,
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"ename": "ValidationError",
|
||||||
|
"evalue": "1 validation error for ToolInputSchema\n__root__\n Domain google is not on the approved list: ['langchain', 'wikipedia'] (type=value_error)",
|
||||||
|
"output_type": "error",
|
||||||
|
"traceback": [
|
||||||
|
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||||
|
"\u001b[0;31mValidationError\u001b[0m Traceback (most recent call last)",
|
||||||
|
"Cell \u001b[0;32mIn[7], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m agent\u001b[39m.\u001b[39;49mrun(\u001b[39m\"\u001b[39;49m\u001b[39mWhat\u001b[39;49m\u001b[39m'\u001b[39;49m\u001b[39ms the main title on google.com?\u001b[39;49m\u001b[39m\"\u001b[39;49m)\n",
|
||||||
|
"File \u001b[0;32m~/code/lc/lckg/langchain/chains/base.py:213\u001b[0m, in \u001b[0;36mChain.run\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 211\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mlen\u001b[39m(args) \u001b[39m!=\u001b[39m \u001b[39m1\u001b[39m:\n\u001b[1;32m 212\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\u001b[39m\"\u001b[39m\u001b[39m`run` supports only one positional argument.\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[0;32m--> 213\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m(args[\u001b[39m0\u001b[39;49m])[\u001b[39mself\u001b[39m\u001b[39m.\u001b[39moutput_keys[\u001b[39m0\u001b[39m]]\n\u001b[1;32m 215\u001b[0m \u001b[39mif\u001b[39;00m kwargs \u001b[39mand\u001b[39;00m \u001b[39mnot\u001b[39;00m args:\n\u001b[1;32m 216\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m(kwargs)[\u001b[39mself\u001b[39m\u001b[39m.\u001b[39moutput_keys[\u001b[39m0\u001b[39m]]\n",
|
||||||
|
"File \u001b[0;32m~/code/lc/lckg/langchain/chains/base.py:116\u001b[0m, in \u001b[0;36mChain.__call__\u001b[0;34m(self, inputs, return_only_outputs)\u001b[0m\n\u001b[1;32m 114\u001b[0m \u001b[39mexcept\u001b[39;00m (\u001b[39mKeyboardInterrupt\u001b[39;00m, \u001b[39mException\u001b[39;00m) \u001b[39mas\u001b[39;00m e:\n\u001b[1;32m 115\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcallback_manager\u001b[39m.\u001b[39mon_chain_error(e, verbose\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mverbose)\n\u001b[0;32m--> 116\u001b[0m \u001b[39mraise\u001b[39;00m e\n\u001b[1;32m 117\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcallback_manager\u001b[39m.\u001b[39mon_chain_end(outputs, verbose\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mverbose)\n\u001b[1;32m 118\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mprep_outputs(inputs, outputs, return_only_outputs)\n",
|
||||||
|
"File \u001b[0;32m~/code/lc/lckg/langchain/chains/base.py:113\u001b[0m, in \u001b[0;36mChain.__call__\u001b[0;34m(self, inputs, return_only_outputs)\u001b[0m\n\u001b[1;32m 107\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcallback_manager\u001b[39m.\u001b[39mon_chain_start(\n\u001b[1;32m 108\u001b[0m {\u001b[39m\"\u001b[39m\u001b[39mname\u001b[39m\u001b[39m\"\u001b[39m: \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m\u001b[39m__class__\u001b[39m\u001b[39m.\u001b[39m\u001b[39m__name__\u001b[39m},\n\u001b[1;32m 109\u001b[0m inputs,\n\u001b[1;32m 110\u001b[0m verbose\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mverbose,\n\u001b[1;32m 111\u001b[0m )\n\u001b[1;32m 112\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m--> 113\u001b[0m outputs \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_call(inputs)\n\u001b[1;32m 114\u001b[0m \u001b[39mexcept\u001b[39;00m (\u001b[39mKeyboardInterrupt\u001b[39;00m, \u001b[39mException\u001b[39;00m) \u001b[39mas\u001b[39;00m e:\n\u001b[1;32m 115\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcallback_manager\u001b[39m.\u001b[39mon_chain_error(e, verbose\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mverbose)\n",
|
||||||
|
"File \u001b[0;32m~/code/lc/lckg/langchain/agents/agent.py:792\u001b[0m, in \u001b[0;36mAgentExecutor._call\u001b[0;34m(self, inputs)\u001b[0m\n\u001b[1;32m 790\u001b[0m \u001b[39m# We now enter the agent loop (until it returns something).\u001b[39;00m\n\u001b[1;32m 791\u001b[0m \u001b[39mwhile\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_should_continue(iterations, time_elapsed):\n\u001b[0;32m--> 792\u001b[0m next_step_output \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_take_next_step(\n\u001b[1;32m 793\u001b[0m name_to_tool_map, color_mapping, inputs, intermediate_steps\n\u001b[1;32m 794\u001b[0m )\n\u001b[1;32m 795\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39misinstance\u001b[39m(next_step_output, AgentFinish):\n\u001b[1;32m 796\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_return(next_step_output, intermediate_steps)\n",
|
||||||
|
"File \u001b[0;32m~/code/lc/lckg/langchain/agents/agent.py:695\u001b[0m, in \u001b[0;36mAgentExecutor._take_next_step\u001b[0;34m(self, name_to_tool_map, color_mapping, inputs, intermediate_steps)\u001b[0m\n\u001b[1;32m 693\u001b[0m tool_run_kwargs[\u001b[39m\"\u001b[39m\u001b[39mllm_prefix\u001b[39m\u001b[39m\"\u001b[39m] \u001b[39m=\u001b[39m \u001b[39m\"\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 694\u001b[0m \u001b[39m# We then call the tool on the tool input to get an observation\u001b[39;00m\n\u001b[0;32m--> 695\u001b[0m observation \u001b[39m=\u001b[39m tool\u001b[39m.\u001b[39;49mrun(\n\u001b[1;32m 696\u001b[0m agent_action\u001b[39m.\u001b[39;49mtool_input,\n\u001b[1;32m 697\u001b[0m verbose\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mverbose,\n\u001b[1;32m 698\u001b[0m color\u001b[39m=\u001b[39;49mcolor,\n\u001b[1;32m 699\u001b[0m \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mtool_run_kwargs,\n\u001b[1;32m 700\u001b[0m )\n\u001b[1;32m 701\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 702\u001b[0m tool_run_kwargs \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39magent\u001b[39m.\u001b[39mtool_run_logging_kwargs()\n",
|
||||||
|
"File \u001b[0;32m~/code/lc/lckg/langchain/tools/base.py:110\u001b[0m, in \u001b[0;36mBaseTool.run\u001b[0;34m(self, tool_input, verbose, start_color, color, **kwargs)\u001b[0m\n\u001b[1;32m 101\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mrun\u001b[39m(\n\u001b[1;32m 102\u001b[0m \u001b[39mself\u001b[39m,\n\u001b[1;32m 103\u001b[0m tool_input: Union[\u001b[39mstr\u001b[39m, Dict],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 107\u001b[0m \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs: Any,\n\u001b[1;32m 108\u001b[0m ) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m \u001b[39mstr\u001b[39m:\n\u001b[1;32m 109\u001b[0m \u001b[39m \u001b[39m\u001b[39m\"\"\"Run the tool.\"\"\"\u001b[39;00m\n\u001b[0;32m--> 110\u001b[0m run_input \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_parse_input(tool_input)\n\u001b[1;32m 111\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mverbose \u001b[39mand\u001b[39;00m verbose \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 112\u001b[0m verbose_ \u001b[39m=\u001b[39m verbose\n",
|
||||||
|
"File \u001b[0;32m~/code/lc/lckg/langchain/tools/base.py:71\u001b[0m, in \u001b[0;36mBaseTool._parse_input\u001b[0;34m(self, tool_input)\u001b[0m\n\u001b[1;32m 69\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39missubclass\u001b[39m(input_args, BaseModel):\n\u001b[1;32m 70\u001b[0m key_ \u001b[39m=\u001b[39m \u001b[39mnext\u001b[39m(\u001b[39miter\u001b[39m(input_args\u001b[39m.\u001b[39m__fields__\u001b[39m.\u001b[39mkeys()))\n\u001b[0;32m---> 71\u001b[0m input_args\u001b[39m.\u001b[39;49mparse_obj({key_: tool_input})\n\u001b[1;32m 72\u001b[0m \u001b[39m# Passing as a positional argument is more straightforward for\u001b[39;00m\n\u001b[1;32m 73\u001b[0m \u001b[39m# backwards compatability\u001b[39;00m\n\u001b[1;32m 74\u001b[0m \u001b[39mreturn\u001b[39;00m tool_input\n",
|
||||||
|
"File \u001b[0;32m~/code/lc/lckg/.venv/lib/python3.11/site-packages/pydantic/main.py:526\u001b[0m, in \u001b[0;36mpydantic.main.BaseModel.parse_obj\u001b[0;34m()\u001b[0m\n",
|
||||||
|
"File \u001b[0;32m~/code/lc/lckg/.venv/lib/python3.11/site-packages/pydantic/main.py:341\u001b[0m, in \u001b[0;36mpydantic.main.BaseModel.__init__\u001b[0;34m()\u001b[0m\n",
|
||||||
|
"\u001b[0;31mValidationError\u001b[0m: 1 validation error for ToolInputSchema\n__root__\n Domain google is not on the approved list: ['langchain', 'wikipedia'] (type=value_error)"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"agent.run(\"What's the main title on google.com?\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -2,9 +2,9 @@
|
|||||||
from inspect import signature
|
from inspect import signature
|
||||||
from typing import Any, Awaitable, Callable, Optional, Type, Union
|
from typing import Any, Awaitable, Callable, Optional, Type, Union
|
||||||
|
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel, validate_arguments
|
||||||
|
|
||||||
from langchain.tools.base import BaseTool, create_args_schema_model_from_signature
|
from langchain.tools.base import BaseTool
|
||||||
|
|
||||||
|
|
||||||
class Tool(BaseTool):
|
class Tool(BaseTool):
|
||||||
@ -16,15 +16,6 @@ class Tool(BaseTool):
|
|||||||
coroutine: Optional[Callable[..., Awaitable[str]]] = None
|
coroutine: Optional[Callable[..., Awaitable[str]]] = None
|
||||||
"""The asynchronous version of the function."""
|
"""The asynchronous version of the function."""
|
||||||
|
|
||||||
@property
|
|
||||||
def args(self) -> Type[BaseModel]:
|
|
||||||
"""Generate an input pydantic model."""
|
|
||||||
if self.args_schema is not None:
|
|
||||||
return self.args_schema
|
|
||||||
# Infer the schema directly from the function to add more structured
|
|
||||||
# arguments.
|
|
||||||
return create_args_schema_model_from_signature(self.func)
|
|
||||||
|
|
||||||
def _run(self, *args: Any, **kwargs: Any) -> str:
|
def _run(self, *args: Any, **kwargs: Any) -> str:
|
||||||
"""Use the tool."""
|
"""Use the tool."""
|
||||||
return self.func(*args, **kwargs)
|
return self.func(*args, **kwargs)
|
||||||
@ -60,9 +51,23 @@ class InvalidTool(BaseTool):
|
|||||||
return f"{tool_name} is not a valid tool, try another one."
|
return f"{tool_name} is not a valid tool, try another one."
|
||||||
|
|
||||||
|
|
||||||
def tool(*args: Union[str, Callable], return_direct: bool = False) -> Callable:
|
def tool(
|
||||||
|
*args: Union[str, Callable],
|
||||||
|
return_direct: bool = False,
|
||||||
|
args_schema: Optional[Type[BaseModel]] = None,
|
||||||
|
infer_schema: bool = True,
|
||||||
|
) -> Callable:
|
||||||
"""Make tools out of functions, can be used with or without arguments.
|
"""Make tools out of functions, can be used with or without arguments.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
*args: The arguments to the tool.
|
||||||
|
return_direct: Whether to return directly from the tool rather
|
||||||
|
than continuing the agent loop.
|
||||||
|
args_schema: optional argument schema for user to specify
|
||||||
|
infer_schema: Whether to infer the schema of the arguments from
|
||||||
|
the function's signature. This also makes the resultant tool
|
||||||
|
accept a dictionary input to its `run()` function.
|
||||||
|
|
||||||
Requires:
|
Requires:
|
||||||
- Function must be of type (str) -> str
|
- Function must be of type (str) -> str
|
||||||
- Function must have a docstring
|
- Function must have a docstring
|
||||||
@ -87,11 +92,13 @@ def tool(*args: Union[str, Callable], return_direct: bool = False) -> Callable:
|
|||||||
# Description example:
|
# Description example:
|
||||||
# search_api(query: str) - Searches the API for the query.
|
# search_api(query: str) - Searches the API for the query.
|
||||||
description = f"{tool_name}{signature(func)} - {func.__doc__.strip()}"
|
description = f"{tool_name}{signature(func)} - {func.__doc__.strip()}"
|
||||||
args_schema = create_args_schema_model_from_signature(func)
|
_args_schema = args_schema
|
||||||
|
if _args_schema is None and infer_schema:
|
||||||
|
_args_schema = validate_arguments(func).model # type: ignore
|
||||||
tool_ = Tool(
|
tool_ = Tool(
|
||||||
name=tool_name,
|
name=tool_name,
|
||||||
func=func,
|
func=func,
|
||||||
args_schema=args_schema,
|
args_schema=_args_schema,
|
||||||
description=description,
|
description=description,
|
||||||
return_direct=return_direct,
|
return_direct=return_direct,
|
||||||
)
|
)
|
||||||
|
@ -1,75 +1,21 @@
|
|||||||
"""Base implementation for tools or skills."""
|
"""Base implementation for tools or skills."""
|
||||||
|
|
||||||
import inspect
|
|
||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
from typing import Any, Callable, Dict, Optional, Sequence, Tuple, Type, Union
|
from typing import Any, Dict, Optional, Sequence, Tuple, Type, Union
|
||||||
|
|
||||||
from pydantic import BaseModel, Extra, Field, create_model, validator
|
from pydantic import BaseModel, Extra, Field, validator
|
||||||
|
|
||||||
from langchain.callbacks import get_callback_manager
|
from langchain.callbacks import get_callback_manager
|
||||||
from langchain.callbacks.base import BaseCallbackManager
|
from langchain.callbacks.base import BaseCallbackManager
|
||||||
|
|
||||||
|
|
||||||
def create_args_schema_model_from_signature(run_func: Callable) -> Type[BaseModel]:
|
def _to_args_and_kwargs(run_input: Union[str, Dict]) -> Tuple[Sequence, dict]:
|
||||||
"""Create a pydantic model type from a function's signature."""
|
# For backwards compatability, if run_input is a string,
|
||||||
signature_ = inspect.signature(run_func)
|
# pass as a positional argument.
|
||||||
field_definitions: Dict[str, Any] = {}
|
if isinstance(run_input, str):
|
||||||
|
return (run_input,), {}
|
||||||
for name, param in signature_.parameters.items():
|
else:
|
||||||
if name == "self":
|
return [], run_input
|
||||||
continue
|
|
||||||
default_value = (
|
|
||||||
param.default if param.default != inspect.Parameter.empty else None
|
|
||||||
)
|
|
||||||
annotation = (
|
|
||||||
param.annotation if param.annotation != inspect.Parameter.empty else Any
|
|
||||||
)
|
|
||||||
# Handle functions with *args in the signature
|
|
||||||
if param.kind == inspect.Parameter.VAR_POSITIONAL:
|
|
||||||
field_definitions[name] = (
|
|
||||||
Any,
|
|
||||||
Field(default=None, extra={"is_var_positional": True}),
|
|
||||||
)
|
|
||||||
# handle functions with **kwargs in the signature
|
|
||||||
elif param.kind == inspect.Parameter.VAR_KEYWORD:
|
|
||||||
field_definitions[name] = (
|
|
||||||
Any,
|
|
||||||
Field(default=None, extra={"is_var_keyword": True}),
|
|
||||||
)
|
|
||||||
# Handle all other named parameters
|
|
||||||
else:
|
|
||||||
is_keyword_only = param.kind == inspect.Parameter.KEYWORD_ONLY
|
|
||||||
field_definitions[name] = (
|
|
||||||
annotation,
|
|
||||||
Field(
|
|
||||||
default=default_value, extra={"is_keyword_only": is_keyword_only}
|
|
||||||
),
|
|
||||||
)
|
|
||||||
return create_model("ArgsModel", **field_definitions) # type: ignore
|
|
||||||
|
|
||||||
|
|
||||||
def _to_args_and_kwargs(model: BaseModel) -> Tuple[Sequence, dict]:
|
|
||||||
args = []
|
|
||||||
kwargs = {}
|
|
||||||
for name, field in model.__fields__.items():
|
|
||||||
value = getattr(model, name)
|
|
||||||
# Handle *args in the function signature
|
|
||||||
if field.field_info.extra.get("extra", {}).get("is_var_positional"):
|
|
||||||
if isinstance(value, str):
|
|
||||||
# Base case for backwards compatability
|
|
||||||
args.append(value)
|
|
||||||
elif value is not None:
|
|
||||||
args.extend(value)
|
|
||||||
# Handle **kwargs in the function signature
|
|
||||||
elif field.field_info.extra.get("extra", {}).get("is_var_keyword"):
|
|
||||||
if value is not None:
|
|
||||||
kwargs.update(value)
|
|
||||||
elif field.field_info.extra.get("extra", {}).get("is_keyword_only"):
|
|
||||||
kwargs[name] = value
|
|
||||||
else:
|
|
||||||
args.append(value)
|
|
||||||
|
|
||||||
return tuple(args), kwargs
|
|
||||||
|
|
||||||
|
|
||||||
class BaseTool(ABC, BaseModel):
|
class BaseTool(ABC, BaseModel):
|
||||||
@ -90,31 +36,28 @@ class BaseTool(ABC, BaseModel):
|
|||||||
arbitrary_types_allowed = True
|
arbitrary_types_allowed = True
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def args(self) -> Type[BaseModel]:
|
def args(self) -> Union[Type[BaseModel], Type[str]]:
|
||||||
"""Generate an input pydantic model."""
|
"""Generate an input pydantic model."""
|
||||||
if self.args_schema is not None:
|
return str if self.args_schema is None else self.args_schema
|
||||||
return self.args_schema
|
|
||||||
return create_args_schema_model_from_signature(self._run)
|
|
||||||
|
|
||||||
def _parse_input(
|
def _parse_input(
|
||||||
self,
|
self,
|
||||||
tool_input: Union[str, Dict],
|
tool_input: Union[str, Dict],
|
||||||
) -> BaseModel:
|
) -> None:
|
||||||
"""Convert tool input to pydantic model."""
|
"""Convert tool input to pydantic model."""
|
||||||
pydantic_input_type = self.args
|
input_args = self.args
|
||||||
if isinstance(tool_input, str):
|
if isinstance(tool_input, str):
|
||||||
# For backwards compatibility, a tool that only takes
|
if issubclass(input_args, BaseModel):
|
||||||
# a single string input will be converted to a dict.
|
key_ = next(iter(input_args.__fields__.keys()))
|
||||||
# to be validated.
|
input_args.validate({key_: tool_input})
|
||||||
field_name = next(iter(pydantic_input_type.__fields__))
|
|
||||||
tool_input = {field_name: tool_input}
|
|
||||||
if pydantic_input_type is not None:
|
|
||||||
return pydantic_input_type.parse_obj(tool_input)
|
|
||||||
else:
|
else:
|
||||||
raise ValueError(
|
if issubclass(input_args, BaseModel):
|
||||||
f"args_schema required for tool {self.name} in order to"
|
input_args.validate(tool_input)
|
||||||
f" accept input of type {type(tool_input)}"
|
else:
|
||||||
)
|
raise ValueError(
|
||||||
|
f"args_schema required for tool {self.name} in order to"
|
||||||
|
f" accept input of type {type(tool_input)}"
|
||||||
|
)
|
||||||
|
|
||||||
@validator("callback_manager", pre=True, always=True)
|
@validator("callback_manager", pre=True, always=True)
|
||||||
def set_callback_manager(
|
def set_callback_manager(
|
||||||
@ -143,20 +86,20 @@ class BaseTool(ABC, BaseModel):
|
|||||||
**kwargs: Any,
|
**kwargs: Any,
|
||||||
) -> str:
|
) -> str:
|
||||||
"""Run the tool."""
|
"""Run the tool."""
|
||||||
run_input = self._parse_input(tool_input)
|
self._parse_input(tool_input)
|
||||||
if not self.verbose and verbose is not None:
|
if not self.verbose and verbose is not None:
|
||||||
verbose_ = verbose
|
verbose_ = verbose
|
||||||
else:
|
else:
|
||||||
verbose_ = self.verbose
|
verbose_ = self.verbose
|
||||||
self.callback_manager.on_tool_start(
|
self.callback_manager.on_tool_start(
|
||||||
{"name": self.name, "description": self.description},
|
{"name": self.name, "description": self.description},
|
||||||
str(run_input),
|
tool_input if isinstance(tool_input, str) else str(tool_input),
|
||||||
verbose=verbose_,
|
verbose=verbose_,
|
||||||
color=start_color,
|
color=start_color,
|
||||||
**kwargs,
|
**kwargs,
|
||||||
)
|
)
|
||||||
try:
|
try:
|
||||||
args, kwargs = _to_args_and_kwargs(run_input)
|
args, kwargs = _to_args_and_kwargs(tool_input)
|
||||||
observation = self._run(*args, **kwargs)
|
observation = self._run(*args, **kwargs)
|
||||||
except (Exception, KeyboardInterrupt) as e:
|
except (Exception, KeyboardInterrupt) as e:
|
||||||
self.callback_manager.on_tool_error(e, verbose=verbose_)
|
self.callback_manager.on_tool_error(e, verbose=verbose_)
|
||||||
@ -175,7 +118,7 @@ class BaseTool(ABC, BaseModel):
|
|||||||
**kwargs: Any,
|
**kwargs: Any,
|
||||||
) -> str:
|
) -> str:
|
||||||
"""Run the tool asynchronously."""
|
"""Run the tool asynchronously."""
|
||||||
run_input = self._parse_input(tool_input)
|
self._parse_input(tool_input)
|
||||||
if not self.verbose and verbose is not None:
|
if not self.verbose and verbose is not None:
|
||||||
verbose_ = verbose
|
verbose_ = verbose
|
||||||
else:
|
else:
|
||||||
@ -183,7 +126,7 @@ class BaseTool(ABC, BaseModel):
|
|||||||
if self.callback_manager.is_async:
|
if self.callback_manager.is_async:
|
||||||
await self.callback_manager.on_tool_start(
|
await self.callback_manager.on_tool_start(
|
||||||
{"name": self.name, "description": self.description},
|
{"name": self.name, "description": self.description},
|
||||||
str(run_input.dict()),
|
tool_input if isinstance(tool_input, str) else str(tool_input),
|
||||||
verbose=verbose_,
|
verbose=verbose_,
|
||||||
color=start_color,
|
color=start_color,
|
||||||
**kwargs,
|
**kwargs,
|
||||||
@ -191,14 +134,14 @@ class BaseTool(ABC, BaseModel):
|
|||||||
else:
|
else:
|
||||||
self.callback_manager.on_tool_start(
|
self.callback_manager.on_tool_start(
|
||||||
{"name": self.name, "description": self.description},
|
{"name": self.name, "description": self.description},
|
||||||
str(run_input.dict()),
|
tool_input if isinstance(tool_input, str) else str(tool_input),
|
||||||
verbose=verbose_,
|
verbose=verbose_,
|
||||||
color=start_color,
|
color=start_color,
|
||||||
**kwargs,
|
**kwargs,
|
||||||
)
|
)
|
||||||
try:
|
try:
|
||||||
# We then call the tool on the tool input to get an observation
|
# We then call the tool on the tool input to get an observation
|
||||||
args, kwargs = _to_args_and_kwargs(run_input)
|
args, kwargs = _to_args_and_kwargs(tool_input)
|
||||||
observation = await self._arun(*args, **kwargs)
|
observation = await self._arun(*args, **kwargs)
|
||||||
except (Exception, KeyboardInterrupt) as e:
|
except (Exception, KeyboardInterrupt) as e:
|
||||||
if self.callback_manager.is_async:
|
if self.callback_manager.is_async:
|
||||||
|
@ -29,6 +29,6 @@ class WriteFileTool(BaseTool):
|
|||||||
except Exception as e:
|
except Exception as e:
|
||||||
return "Error: " + str(e)
|
return "Error: " + str(e)
|
||||||
|
|
||||||
async def _arun(self, tool_input: str) -> str:
|
async def _arun(self, file_path: str, text: str) -> str:
|
||||||
# TODO: Add aiofiles method
|
# TODO: Add aiofiles method
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
"""Test tool utils."""
|
"""Test tool utils."""
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from typing import Any, Optional, Type, Union
|
from typing import Optional, Type, Union
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
@ -125,21 +125,27 @@ def test_tool_with_kwargs() -> None:
|
|||||||
|
|
||||||
@tool(return_direct=True)
|
@tool(return_direct=True)
|
||||||
def search_api(
|
def search_api(
|
||||||
arg_1: float, *args: Any, ping: Optional[str] = None, **kwargs: Any
|
arg_1: float,
|
||||||
|
ping: str = "hi",
|
||||||
) -> str:
|
) -> str:
|
||||||
"""Search the API for the query."""
|
"""Search the API for the query."""
|
||||||
return f"arg_1={arg_1}, foo={args}, ping={ping}, kwargs={kwargs}"
|
return f"arg_1={arg_1}, ping={ping}"
|
||||||
|
|
||||||
assert isinstance(search_api, Tool)
|
assert isinstance(search_api, Tool)
|
||||||
result = search_api.run(
|
result = search_api.run(
|
||||||
tool_input={
|
tool_input={
|
||||||
"arg_1": 3.2,
|
"arg_1": 3.2,
|
||||||
"args": "fam",
|
|
||||||
"kwargs": {"bar": "baz"},
|
|
||||||
"ping": "pong",
|
"ping": "pong",
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
assert result == "arg_1=3.2, foo=('fam',), ping=pong, kwargs={'bar': 'baz'}"
|
assert result == "arg_1=3.2, ping=pong"
|
||||||
|
|
||||||
|
result = search_api.run(
|
||||||
|
tool_input={
|
||||||
|
"arg_1": 3.2,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
assert result == "arg_1=3.2, ping=hi"
|
||||||
|
|
||||||
|
|
||||||
def test_missing_docstring() -> None:
|
def test_missing_docstring() -> None:
|
||||||
|
Loading…
Reference in New Issue
Block a user