Harrison/tf embeddings (#817)

Co-authored-by: Ryohei Kuroki <10434946+yakigac@users.noreply.github.com>
This commit is contained in:
Harrison Chase 2023-01-31 00:00:08 -08:00 committed by GitHub
parent 5d4b6e4d4e
commit 7b4882a2f4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 1017 additions and 298 deletions

View File

@ -77,7 +77,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "42f76e43",
"metadata": {},
@ -138,7 +137,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "ed47bb62",
"metadata": {},
@ -196,11 +194,79 @@
"source": [
"doc_result = embeddings.embed_documents([text])"
]
},
{
"cell_type": "markdown",
"id": "fff4734f",
"metadata": {},
"source": [
"## TensorflowHub\n",
"Let's load the TensorflowHub Embedding class."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "f822104b",
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings import TensorflowHubEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "bac84e46",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-01-30 23:53:01.652176: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n",
"To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
"2023-01-30 23:53:34.362802: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n",
"To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
]
}
],
"source": [
"embeddings = TensorflowHubEmbeddings()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "4790d770",
"metadata": {},
"outputs": [],
"source": [
"text = \"This is a test document.\""
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "f556dcdb",
"metadata": {},
"outputs": [],
"source": [
"query_result = embeddings.embed_query(text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "90f0db94",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "cohere",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@ -214,7 +280,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
"version": "3.10.9"
},
"vscode": {
"interpreter": {

View File

@ -6,6 +6,7 @@ from langchain.embeddings.cohere import CohereEmbeddings
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.embeddings.huggingface_hub import HuggingFaceHubEmbeddings
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.embeddings.tensorflow_hub import TensorflowHubEmbeddings
logger = logging.getLogger(__name__)
@ -14,6 +15,7 @@ __all__ = [
"HuggingFaceEmbeddings",
"CohereEmbeddings",
"HuggingFaceHubEmbeddings",
"TensorflowHubEmbeddings",
]

View File

@ -0,0 +1,70 @@
"""Wrapper around TensorflowHub embedding models."""
from typing import Any, List
from pydantic import BaseModel, Extra
from langchain.embeddings.base import Embeddings
DEFAULT_MODEL_URL = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3"
class TensorflowHubEmbeddings(BaseModel, Embeddings):
"""Wrapper around tensorflow_hub embedding models.
To use, you should have the ``tensorflow_text`` python package installed.
Example:
.. code-block:: python
from langchain.embeddings import TensorflowHubEmbeddings
url = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3"
tf = TensorflowHubEmbeddings(model_url=url)
"""
embed: Any #: :meta private:
model_url: str = DEFAULT_MODEL_URL
"""Model name to use."""
def __init__(self, **kwargs: Any):
"""Initialize the tensorflow_hub and tensorflow_text."""
super().__init__(**kwargs)
try:
import tensorflow_hub
import tensorflow_text # noqa
self.embed = tensorflow_hub.load(self.model_url)
except ImportError as e:
raise ValueError(
"Could not import some python packages." "Please install them."
) from e
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a TensorflowHub embedding model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
texts = list(map(lambda x: x.replace("\n", " "), texts))
embeddings = self.embed(texts).numpy()
return embeddings.tolist()
def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a TensorflowHub embedding model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
text = text.replace("\n", " ")
embedding = self.embed(text).numpy()[0]
return embedding.tolist()

1147
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -35,6 +35,7 @@ google-api-python-client = {version = "2.70.0", optional = true}
wolframalpha = {version = "5.0.0", optional = true}
qdrant-client = {version = "^0.11.7", optional = true}
dataclasses-json = "^0.5.7"
tensorflow-text = {version = "^2.11.0", optional = true, python = "^3.10, <3.12"}
[tool.poetry.group.docs.dependencies]
autodoc_pydantic = "^1.8.0"
@ -81,7 +82,7 @@ playwright = "^1.28.0"
[tool.poetry.extras]
llms = ["cohere", "openai", "nlpcloud", "huggingface_hub", "manifest-ml", "torch", "transformers"]
all = ["cohere", "openai", "nlpcloud", "huggingface_hub", "manifest-ml", "elasticsearch", "google-search-results", "faiss-cpu", "sentence_transformers", "transformers", "spacy", "nltk", "wikipedia", "beautifulsoup4", "tiktoken", "torch", "jinja2", "pinecone-client", "weaviate-client", "redis", "google-api-python-client", "wolframalpha", "qdrant-client"]
all = ["cohere", "openai", "nlpcloud", "huggingface_hub", "manifest-ml", "elasticsearch", "google-search-results", "faiss-cpu", "sentence_transformers", "transformers", "spacy", "nltk", "wikipedia", "beautifulsoup4", "tiktoken", "torch", "jinja2", "pinecone-client", "weaviate-client", "redis", "google-api-python-client", "wolframalpha", "qdrant-client", "tensorflow-text"]
[tool.isort]
profile = "black"

View File

@ -0,0 +1,19 @@
"""Test TensorflowHub embeddings."""
from langchain.embeddings import TensorflowHubEmbeddings
def test_tensorflowhub_embedding_documents() -> None:
"""Test tensorflowhub embeddings."""
documents = ["foo bar"]
embedding = TensorflowHubEmbeddings()
output = embedding.embed_documents(documents)
assert len(output) == 1
assert len(output[0]) == 512
def test_tensorflowhub_embedding_query() -> None:
"""Test tensorflowhub embeddings."""
document = "foo bar"
embedding = TensorflowHubEmbeddings()
output = embedding.embed_query(document)
assert len(output) == 512