forked from Archives/langchain
Harrison/tf embeddings (#817)
Co-authored-by: Ryohei Kuroki <10434946+yakigac@users.noreply.github.com>
This commit is contained in:
parent
5d4b6e4d4e
commit
7b4882a2f4
@ -77,7 +77,6 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"attachments": {},
|
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "42f76e43",
|
"id": "42f76e43",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -138,7 +137,6 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"attachments": {},
|
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "ed47bb62",
|
"id": "ed47bb62",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -196,11 +194,79 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"doc_result = embeddings.embed_documents([text])"
|
"doc_result = embeddings.embed_documents([text])"
|
||||||
]
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "fff4734f",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## TensorflowHub\n",
|
||||||
|
"Let's load the TensorflowHub Embedding class."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"id": "f822104b",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.embeddings import TensorflowHubEmbeddings"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 5,
|
||||||
|
"id": "bac84e46",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"2023-01-30 23:53:01.652176: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n",
|
||||||
|
"To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
|
||||||
|
"2023-01-30 23:53:34.362802: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n",
|
||||||
|
"To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"embeddings = TensorflowHubEmbeddings()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 6,
|
||||||
|
"id": "4790d770",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"text = \"This is a test document.\""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 7,
|
||||||
|
"id": "f556dcdb",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"query_result = embeddings.embed_query(text)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "90f0db94",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"kernelspec": {
|
"kernelspec": {
|
||||||
"display_name": "cohere",
|
"display_name": "Python 3 (ipykernel)",
|
||||||
"language": "python",
|
"language": "python",
|
||||||
"name": "python3"
|
"name": "python3"
|
||||||
},
|
},
|
||||||
@ -214,7 +280,7 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.10.8"
|
"version": "3.10.9"
|
||||||
},
|
},
|
||||||
"vscode": {
|
"vscode": {
|
||||||
"interpreter": {
|
"interpreter": {
|
||||||
|
@ -6,6 +6,7 @@ from langchain.embeddings.cohere import CohereEmbeddings
|
|||||||
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
||||||
from langchain.embeddings.huggingface_hub import HuggingFaceHubEmbeddings
|
from langchain.embeddings.huggingface_hub import HuggingFaceHubEmbeddings
|
||||||
from langchain.embeddings.openai import OpenAIEmbeddings
|
from langchain.embeddings.openai import OpenAIEmbeddings
|
||||||
|
from langchain.embeddings.tensorflow_hub import TensorflowHubEmbeddings
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
@ -14,6 +15,7 @@ __all__ = [
|
|||||||
"HuggingFaceEmbeddings",
|
"HuggingFaceEmbeddings",
|
||||||
"CohereEmbeddings",
|
"CohereEmbeddings",
|
||||||
"HuggingFaceHubEmbeddings",
|
"HuggingFaceHubEmbeddings",
|
||||||
|
"TensorflowHubEmbeddings",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
70
langchain/embeddings/tensorflow_hub.py
Normal file
70
langchain/embeddings/tensorflow_hub.py
Normal file
@ -0,0 +1,70 @@
|
|||||||
|
"""Wrapper around TensorflowHub embedding models."""
|
||||||
|
from typing import Any, List
|
||||||
|
|
||||||
|
from pydantic import BaseModel, Extra
|
||||||
|
|
||||||
|
from langchain.embeddings.base import Embeddings
|
||||||
|
|
||||||
|
DEFAULT_MODEL_URL = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3"
|
||||||
|
|
||||||
|
|
||||||
|
class TensorflowHubEmbeddings(BaseModel, Embeddings):
|
||||||
|
"""Wrapper around tensorflow_hub embedding models.
|
||||||
|
|
||||||
|
To use, you should have the ``tensorflow_text`` python package installed.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from langchain.embeddings import TensorflowHubEmbeddings
|
||||||
|
url = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3"
|
||||||
|
tf = TensorflowHubEmbeddings(model_url=url)
|
||||||
|
"""
|
||||||
|
|
||||||
|
embed: Any #: :meta private:
|
||||||
|
model_url: str = DEFAULT_MODEL_URL
|
||||||
|
"""Model name to use."""
|
||||||
|
|
||||||
|
def __init__(self, **kwargs: Any):
|
||||||
|
"""Initialize the tensorflow_hub and tensorflow_text."""
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
try:
|
||||||
|
import tensorflow_hub
|
||||||
|
import tensorflow_text # noqa
|
||||||
|
|
||||||
|
self.embed = tensorflow_hub.load(self.model_url)
|
||||||
|
except ImportError as e:
|
||||||
|
raise ValueError(
|
||||||
|
"Could not import some python packages." "Please install them."
|
||||||
|
) from e
|
||||||
|
|
||||||
|
class Config:
|
||||||
|
"""Configuration for this pydantic object."""
|
||||||
|
|
||||||
|
extra = Extra.forbid
|
||||||
|
|
||||||
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||||
|
"""Compute doc embeddings using a TensorflowHub embedding model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
texts: The list of texts to embed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of embeddings, one for each text.
|
||||||
|
"""
|
||||||
|
texts = list(map(lambda x: x.replace("\n", " "), texts))
|
||||||
|
embeddings = self.embed(texts).numpy()
|
||||||
|
return embeddings.tolist()
|
||||||
|
|
||||||
|
def embed_query(self, text: str) -> List[float]:
|
||||||
|
"""Compute query embeddings using a TensorflowHub embedding model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
text: The text to embed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Embeddings for the text.
|
||||||
|
"""
|
||||||
|
text = text.replace("\n", " ")
|
||||||
|
embedding = self.embed(text).numpy()[0]
|
||||||
|
return embedding.tolist()
|
1147
poetry.lock
generated
1147
poetry.lock
generated
File diff suppressed because it is too large
Load Diff
@ -35,6 +35,7 @@ google-api-python-client = {version = "2.70.0", optional = true}
|
|||||||
wolframalpha = {version = "5.0.0", optional = true}
|
wolframalpha = {version = "5.0.0", optional = true}
|
||||||
qdrant-client = {version = "^0.11.7", optional = true}
|
qdrant-client = {version = "^0.11.7", optional = true}
|
||||||
dataclasses-json = "^0.5.7"
|
dataclasses-json = "^0.5.7"
|
||||||
|
tensorflow-text = {version = "^2.11.0", optional = true, python = "^3.10, <3.12"}
|
||||||
|
|
||||||
[tool.poetry.group.docs.dependencies]
|
[tool.poetry.group.docs.dependencies]
|
||||||
autodoc_pydantic = "^1.8.0"
|
autodoc_pydantic = "^1.8.0"
|
||||||
@ -81,7 +82,7 @@ playwright = "^1.28.0"
|
|||||||
|
|
||||||
[tool.poetry.extras]
|
[tool.poetry.extras]
|
||||||
llms = ["cohere", "openai", "nlpcloud", "huggingface_hub", "manifest-ml", "torch", "transformers"]
|
llms = ["cohere", "openai", "nlpcloud", "huggingface_hub", "manifest-ml", "torch", "transformers"]
|
||||||
all = ["cohere", "openai", "nlpcloud", "huggingface_hub", "manifest-ml", "elasticsearch", "google-search-results", "faiss-cpu", "sentence_transformers", "transformers", "spacy", "nltk", "wikipedia", "beautifulsoup4", "tiktoken", "torch", "jinja2", "pinecone-client", "weaviate-client", "redis", "google-api-python-client", "wolframalpha", "qdrant-client"]
|
all = ["cohere", "openai", "nlpcloud", "huggingface_hub", "manifest-ml", "elasticsearch", "google-search-results", "faiss-cpu", "sentence_transformers", "transformers", "spacy", "nltk", "wikipedia", "beautifulsoup4", "tiktoken", "torch", "jinja2", "pinecone-client", "weaviate-client", "redis", "google-api-python-client", "wolframalpha", "qdrant-client", "tensorflow-text"]
|
||||||
|
|
||||||
[tool.isort]
|
[tool.isort]
|
||||||
profile = "black"
|
profile = "black"
|
||||||
|
19
tests/integration_tests/embeddings/test_tensorflow_hub.py
Normal file
19
tests/integration_tests/embeddings/test_tensorflow_hub.py
Normal file
@ -0,0 +1,19 @@
|
|||||||
|
"""Test TensorflowHub embeddings."""
|
||||||
|
from langchain.embeddings import TensorflowHubEmbeddings
|
||||||
|
|
||||||
|
|
||||||
|
def test_tensorflowhub_embedding_documents() -> None:
|
||||||
|
"""Test tensorflowhub embeddings."""
|
||||||
|
documents = ["foo bar"]
|
||||||
|
embedding = TensorflowHubEmbeddings()
|
||||||
|
output = embedding.embed_documents(documents)
|
||||||
|
assert len(output) == 1
|
||||||
|
assert len(output[0]) == 512
|
||||||
|
|
||||||
|
|
||||||
|
def test_tensorflowhub_embedding_query() -> None:
|
||||||
|
"""Test tensorflowhub embeddings."""
|
||||||
|
document = "foo bar"
|
||||||
|
embedding = TensorflowHubEmbeddings()
|
||||||
|
output = embedding.embed_query(document)
|
||||||
|
assert len(output) == 512
|
Loading…
Reference in New Issue
Block a user