Add logging in PBI tool (#5841)

<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.

Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.

After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.

Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->

Add some logging into the powerbi tool so that you can see the queries
being sent to PBI and attempts to correct them.

<!-- Remove if not applicable -->

Fixes # (issue)

#### Before submitting

<!-- If you're adding a new integration, please include:

1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use


See contribution guidelines for more information on how to write tests,
lint
etc:


https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->

#### Who can review?

Tag maintainers/contributors who might be interested: @vowelparrot 

<!-- For a quicker response, figure out the right person to tag with @

  @hwchase17 - project lead

  Tracing / Callbacks
  - @agola11

  Async
  - @agola11

  DataLoaders
  - @eyurtsev

  Models
  - @hwchase17
  - @agola11

  Agents / Tools / Toolkits
  - @vowelparrot

  VectorStores / Retrievers / Memory
  - @dev2049

 -->
This commit is contained in:
Eduard van Valkenburg 2023-06-08 04:19:21 +02:00 committed by GitHub
parent 11fec7d4d1
commit 76fcd96dae
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,4 +1,5 @@
"""Tools for interacting with a Power BI dataset.""" """Tools for interacting with a Power BI dataset."""
import logging
from typing import Any, Dict, Optional, Tuple from typing import Any, Dict, Optional, Tuple
from pydantic import Field, validator from pydantic import Field, validator
@ -17,6 +18,8 @@ from langchain.tools.powerbi.prompt import (
) )
from langchain.utilities.powerbi import PowerBIDataset, json_to_md from langchain.utilities.powerbi import PowerBIDataset, json_to_md
logger = logging.getLogger(__name__)
class QueryPowerBITool(BaseTool): class QueryPowerBITool(BaseTool):
"""Tool for querying a Power BI Dataset.""" """Tool for querying a Power BI Dataset."""
@ -73,9 +76,11 @@ class QueryPowerBITool(BaseTool):
) -> str: ) -> str:
"""Execute the query, return the results or an error message.""" """Execute the query, return the results or an error message."""
if cache := self._check_cache(tool_input): if cache := self._check_cache(tool_input):
logger.debug("Found cached result for %s: %s", tool_input, cache)
return cache return cache
try: try:
logger.info("Running PBI Query Tool with input: %s", tool_input)
query = self.llm_chain.predict( query = self.llm_chain.predict(
tool_input=tool_input, tool_input=tool_input,
tables=self.powerbi.get_table_names(), tables=self.powerbi.get_table_names(),
@ -88,6 +93,7 @@ class QueryPowerBITool(BaseTool):
if query == "I cannot answer this": if query == "I cannot answer this":
self.session_cache[tool_input] = query self.session_cache[tool_input] = query
return self.session_cache[tool_input] return self.session_cache[tool_input]
logger.info("Query: %s", query)
pbi_result = self.powerbi.run(command=query) pbi_result = self.powerbi.run(command=query)
result, error = self._parse_output(pbi_result) result, error = self._parse_output(pbi_result)
@ -114,8 +120,10 @@ class QueryPowerBITool(BaseTool):
) -> str: ) -> str:
"""Execute the query, return the results or an error message.""" """Execute the query, return the results or an error message."""
if cache := self._check_cache(tool_input): if cache := self._check_cache(tool_input):
logger.debug("Found cached result for %s: %s", tool_input, cache)
return cache return cache
try: try:
logger.info("Running PBI Query Tool with input: %s", tool_input)
query = await self.llm_chain.apredict( query = await self.llm_chain.apredict(
tool_input=tool_input, tool_input=tool_input,
tables=self.powerbi.get_table_names(), tables=self.powerbi.get_table_names(),
@ -129,6 +137,7 @@ class QueryPowerBITool(BaseTool):
if query == "I cannot answer this": if query == "I cannot answer this":
self.session_cache[tool_input] = query self.session_cache[tool_input] = query
return self.session_cache[tool_input] return self.session_cache[tool_input]
logger.info("Query: %s", query)
pbi_result = await self.powerbi.arun(command=query) pbi_result = await self.powerbi.arun(command=query)
result, error = self._parse_output(pbi_result) result, error = self._parse_output(pbi_result)