### Background

Continuing to implement all the interface methods defined by the
`VectorStore` class. This PR pertains to implementation of the
`max_marginal_relevance_search_by_vector` method.

### Changes

- a `max_marginal_relevance_search_by_vector` method implementation has
been added in `weaviate.py`
- tests have been added to the the new method
- vcr cassettes have been added for the weaviate tests

### Test Plan

Added tests for the `max_marginal_relevance_search_by_vector`
implementation

### Change Safety

- [x] I have added tests to cover my changes
This commit is contained in:
cs0lar 2023-04-24 19:50:55 +01:00 committed by GitHub
parent 434d8c4c0e
commit 3033c6b964
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
14 changed files with 1784 additions and 1026 deletions

View File

@ -201,7 +201,12 @@ class Annoy(VectorStore):
return [doc for doc, _ in docs_and_scores]
def max_marginal_relevance_search_by_vector(
self, embedding: List[float], k: int = 4, fetch_k: int = 20, **kwargs: Any
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
@ -212,6 +217,10 @@ class Annoy(VectorStore):
embedding: Embedding to look up documents similar to.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
k: Number of Documents to return. Defaults to 4.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
@ -221,7 +230,10 @@ class Annoy(VectorStore):
)
embeddings = [self.index.get_item_vector(i) for i in idxs]
mmr_selected = maximal_marginal_relevance(
np.array([embedding], dtype=np.float32), embeddings, k=k
np.array([embedding], dtype=np.float32),
embeddings,
k=k,
lambda_mult=lambda_mult,
)
# ignore the -1's if not enough docs are returned/indexed
selected_indices = [idxs[i] for i in mmr_selected if i != -1]
@ -236,7 +248,12 @@ class Annoy(VectorStore):
return docs
def max_marginal_relevance_search(
self, query: str, k: int = 4, fetch_k: int = 20, **kwargs: Any
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
@ -247,12 +264,17 @@ class Annoy(VectorStore):
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
embedding = self.embedding_function(query)
docs = self.max_marginal_relevance_search_by_vector(embedding, k, fetch_k)
docs = self.max_marginal_relevance_search_by_vector(
embedding, k, fetch_k, lambda_mult=lambda_mult
)
return docs
@classmethod

View File

@ -153,7 +153,12 @@ class VectorStore(ABC):
return await asyncio.get_event_loop().run_in_executor(None, func)
def max_marginal_relevance_search(
self, query: str, k: int = 4, fetch_k: int = 20, **kwargs: Any
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
@ -164,25 +169,40 @@ class VectorStore(ABC):
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
raise NotImplementedError
async def amax_marginal_relevance_search(
self, query: str, k: int = 4, fetch_k: int = 20, **kwargs: Any
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance."""
# This is a temporary workaround to make the similarity search
# asynchronous. The proper solution is to make the similarity search
# asynchronous in the vector store implementations.
func = partial(self.max_marginal_relevance_search, query, k, fetch_k, **kwargs)
func = partial(
self.max_marginal_relevance_search, query, k, fetch_k, lambda_mult, **kwargs
)
return await asyncio.get_event_loop().run_in_executor(None, func)
def max_marginal_relevance_search_by_vector(
self, embedding: List[float], k: int = 4, fetch_k: int = 20, **kwargs: Any
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
@ -193,14 +213,22 @@ class VectorStore(ABC):
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
raise NotImplementedError
async def amax_marginal_relevance_search_by_vector(
self, embedding: List[float], k: int = 4, fetch_k: int = 20, **kwargs: Any
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance."""
raise NotImplementedError

View File

@ -198,6 +198,7 @@ class Chroma(VectorStore):
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
@ -208,6 +209,10 @@ class Chroma(VectorStore):
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List of Documents selected by maximal marginal relevance.
@ -220,7 +225,10 @@ class Chroma(VectorStore):
include=["metadatas", "documents", "distances", "embeddings"],
)
mmr_selected = maximal_marginal_relevance(
np.array(embedding, dtype=np.float32), results["embeddings"][0], k=k
np.array(embedding, dtype=np.float32),
results["embeddings"][0],
k=k,
lambda_mult=lambda_mult,
)
candidates = _results_to_docs(results)
@ -233,6 +241,7 @@ class Chroma(VectorStore):
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
@ -243,6 +252,10 @@ class Chroma(VectorStore):
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List of Documents selected by maximal marginal relevance.
@ -254,7 +267,7 @@ class Chroma(VectorStore):
embedding = self._embedding_function.embed_query(query)
docs = self.max_marginal_relevance_search_by_vector(
embedding, k, fetch_k, filter
embedding, k, fetch_k, lambda_mul=lambda_mult, filter=filter
)
return docs

View File

@ -315,8 +315,12 @@ class DeepLake(VectorStore):
view = view[indices]
if use_maximal_marginal_relevance:
lambda_mult = kwargs.get("lambda_mult", 0.5)
indices = maximal_marginal_relevance(
query_emb, embeddings[indices], k=min(k, len(indices))
query_emb,
embeddings[indices],
k=min(k, len(indices)),
lambda_mult=lambda_mult,
)
view = view[indices]
scores = [scores[i] for i in indices]
@ -406,7 +410,12 @@ class DeepLake(VectorStore):
)
def max_marginal_relevance_search_by_vector(
self, embedding: List[float], k: int = 4, fetch_k: int = 20, **kwargs: Any
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
@ -415,6 +424,10 @@ class DeepLake(VectorStore):
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
@ -423,10 +436,16 @@ class DeepLake(VectorStore):
k=k,
fetch_k=fetch_k,
use_maximal_marginal_relevance=True,
lambda_mult=lambda_mult,
)
def max_marginal_relevance_search(
self, query: str, k: int = 4, fetch_k: int = 20, **kwargs: Any
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
@ -435,6 +454,10 @@ class DeepLake(VectorStore):
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
@ -443,7 +466,11 @@ class DeepLake(VectorStore):
"For MMR search, you must specify an embedding function on" "creation."
)
return self.search(
query=query, k=k, fetch_k=fetch_k, use_maximal_marginal_relevance=True
query=query,
k=k,
fetch_k=fetch_k,
use_maximal_marginal_relevance=True,
lambda_mult=lambda_mult,
)
@classmethod

View File

@ -227,7 +227,12 @@ class FAISS(VectorStore):
return [doc for doc, _ in docs_and_scores]
def max_marginal_relevance_search_by_vector(
self, embedding: List[float], k: int = 4, fetch_k: int = 20, **kwargs: Any
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
@ -238,7 +243,10 @@ class FAISS(VectorStore):
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
@ -246,7 +254,10 @@ class FAISS(VectorStore):
# -1 happens when not enough docs are returned.
embeddings = [self.index.reconstruct(int(i)) for i in indices[0] if i != -1]
mmr_selected = maximal_marginal_relevance(
np.array([embedding], dtype=np.float32), embeddings, k=k
np.array([embedding], dtype=np.float32),
embeddings,
k=k,
lambda_mult=lambda_mult,
)
selected_indices = [indices[0][i] for i in mmr_selected]
docs = []
@ -266,6 +277,7 @@ class FAISS(VectorStore):
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
@ -277,12 +289,17 @@ class FAISS(VectorStore):
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
embedding = self.embedding_function(query)
docs = self.max_marginal_relevance_search_by_vector(embedding, k, fetch_k)
docs = self.max_marginal_relevance_search_by_vector(
embedding, k, fetch_k, lambda_mult=lambda_mult
)
return docs
def merge_from(self, target: FAISS) -> None:

View File

@ -619,6 +619,7 @@ class Milvus(VectorStore):
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
param: Optional[dict] = None,
expr: Optional[str] = None,
timeout: Optional[int] = None,
@ -631,6 +632,10 @@ class Milvus(VectorStore):
k (int, optional): How many results to give. Defaults to 4.
fetch_k (int, optional): Total results to select k from.
Defaults to 20.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5
param (dict, optional): The search params for the specified index.
Defaults to None.
expr (str, optional): Filtering expression. Defaults to None.
@ -652,6 +657,7 @@ class Milvus(VectorStore):
embedding=embedding,
k=k,
fetch_k=fetch_k,
lambda_mult=lambda_mult,
param=param,
expr=expr,
timeout=timeout,
@ -663,6 +669,7 @@ class Milvus(VectorStore):
embedding: list[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
param: Optional[dict] = None,
expr: Optional[str] = None,
timeout: Optional[int] = None,
@ -675,6 +682,10 @@ class Milvus(VectorStore):
k (int, optional): How many results to give. Defaults to 4.
fetch_k (int, optional): Total results to select k from.
Defaults to 20.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5
param (dict, optional): The search params for the specified index.
Defaults to None.
expr (str, optional): Filtering expression. Defaults to None.
@ -730,7 +741,7 @@ class Milvus(VectorStore):
# Get the new order of results.
new_ordering = maximal_marginal_relevance(
np.array(embedding), ordered_result_embeddings, k=k
np.array(embedding), ordered_result_embeddings, k=k, lambda_mult=lambda_mult
)
# Reorder the values and return.

View File

@ -151,6 +151,7 @@ class Qdrant(VectorStore):
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
@ -163,7 +164,10 @@ class Qdrant(VectorStore):
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
Defaults to 20.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
@ -176,7 +180,9 @@ class Qdrant(VectorStore):
limit=fetch_k,
)
embeddings = [result.vector for result in results]
mmr_selected = maximal_marginal_relevance(embedding, embeddings, k=k)
mmr_selected = maximal_marginal_relevance(
embedding, embeddings, k=k, lambda_mult=lambda_mult
)
return [
self._document_from_scored_point(
results[i], self.content_payload_key, self.metadata_payload_key

View File

@ -236,6 +236,7 @@ class SupabaseVectorStore(VectorStore):
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
@ -247,7 +248,10 @@ class SupabaseVectorStore(VectorStore):
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
@ -259,7 +263,10 @@ class SupabaseVectorStore(VectorStore):
matched_embeddings = [doc_tuple[2] for doc_tuple in result]
mmr_selected = maximal_marginal_relevance(
np.array([embedding], dtype=np.float32), matched_embeddings, k=k
np.array([embedding], dtype=np.float32),
matched_embeddings,
k=k,
lambda_mult=lambda_mult,
)
filtered_documents = [matched_documents[i] for i in mmr_selected]
@ -271,6 +278,7 @@ class SupabaseVectorStore(VectorStore):
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
@ -282,7 +290,10 @@ class SupabaseVectorStore(VectorStore):
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
@ -318,5 +329,7 @@ class SupabaseVectorStore(VectorStore):
$$;```
"""
embedding = self._embedding.embed_documents([query])
docs = self.max_marginal_relevance_search_by_vector(embedding[0], k, fetch_k)
docs = self.max_marginal_relevance_search_by_vector(
embedding[0], k, fetch_k, lambda_mult=lambda_mult
)
return docs

View File

@ -135,7 +135,12 @@ class Weaviate(VectorStore):
return docs
def max_marginal_relevance_search(
self, query: str, k: int = 4, fetch_k: int = 20, **kwargs: Any
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
@ -146,12 +151,14 @@ class Weaviate(VectorStore):
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
lambda_mult = kwargs.get("lambda_mult", 0.5)
if self._embedding is not None:
embedding = self._embedding.embed_query(query)
else:
@ -159,6 +166,35 @@ class Weaviate(VectorStore):
"max_marginal_relevance_search requires a suitable Embeddings object"
)
return self.max_marginal_relevance_search_by_vector(
embedding, k=k, fetch_k=fetch_k, lambda_mult=lambda_mult, **kwargs
)
def max_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
vector = {"vector": embedding}
query_obj = self._client.query.get(self._index_name, self._query_attrs)
results = (
@ -180,6 +216,7 @@ class Weaviate(VectorStore):
payload[idx].pop("_additional")
meta = payload[idx]
docs.append(Document(page_content=text, metadata=meta))
return docs
@classmethod

View File

@ -121,231 +121,231 @@ interactions:
M0fjN39o9dRD5r2dU9//+PS4PfsM2yiIR+/1pKvepC2Vd3VY8vBwDcH+FDlzv/VJ54OQUDjfR3Q4
KswcG29nwPV2ebAw9Z7ix79hu4y2hLinh8kf65EiuNtHtqW5aopLPgt/+vDHJ8w/vt7OghPz6/cs
pXrvFZDLbEMs36clLZywBksjFsN41pQjAxNgdRzvLPjqcfb1Y+GBu4SCHa4Rjx9XCa2ViyA/P2Dq
sVmsxnS2Jp7tP83JfkkKIsZYEvs1Pctvvk+wLZYGfr8r7I+owSEsQrr7PwAAAP//pJ1Lr6PAlqXn
9StKd0pfgTEQQc14m5cJXsa21GoBtjFgjA1EACHVfy/hc7vVgxp1DzOVx2nHY6+1vr3N2fKhQWu/
IjEMJr5BakdqnQ7hIPz6LQHLR3gghmYy0I0tgMyXbw879DmUcONVAafVdrN8yv7y868bT4zBysiL
BRVm8JEN1jRZwbfrpSI68sSR1aSZb+mhArLCPYif1BMdN734W393Bm5B6bs04IV9nX79rGbjcV9A
7UVCbtOp4M9/+ZGn477OEaBDfQmgtKxn5EnuJ6GHY1BBRs4CdHQvaJibNa+gvPgqcjceh51ZvsMI
FFXwVPcYkJh0mbjdn79+9m69CBLc+PRf/hiiQrr89AFp1/o9zGoncPKmv/jHT+b006SQLR7PXz9K
X8MxE2DVNSnm4FoNdLm5HRSumYs0n38VyxWHwp8/14s09eZ795Wg7fAPcmA+R0q1PcyB7CprIDXd
k1KtnHrpRGQJ6ffwoU80yiyYhacbMZ/OmMxebBhQPnw9jENcecup/oSA6bIluO261vu7X7/+snb3
pmE7PzwMoTBgcetXD7cDN8JdYnE/PtQs17Jtwc9fqRqj6HMouuUvbxCvWg26zJBq8B+/qYD//B//
DxMFu/9+oiA35zcGB632FuOb5OCSpyGJL58HaJPyGAKeuC+CoHIoeKYXNKBHkUGQhIthqhW1lEXZ
vyH/iwtvLhweQ4dlXMwu2i5Zqrjv4UEcWXSQVAks58lmYMq3ceCaJ0aflrXsIZosnWiBLBbf6+vS
AvCqTRIsYTwsVAGZFH8HBXmLgsDscqEl84EVE91X32DR4dpBTzOWYOVf+kAPudTDHL9KLBbnMJmG
N9MBXj1qxLkVBzoeUYSBe39YyLnzn2LJfM8GeBZCkg7JC2CXrUJZPKslCfbpB8yT4qSgENgqYJLx
0YxrvHXgI3dFQQeyhEYa4cHc9RUxhbDfOl4zByS4jFsHVqRY3LkZfNrejhzn0fCmjslSeIsSG08D
YJPJq+NQPj9fQkDTeGyGQU59eCKSRtTqqHh9l045FJ98hDnsfHRCd4UBnzH8kiKq0uQzF2MIv9oa
ID0qP0l/utsQPvvvjA5kvDe9+exjKBXkitTwVifz9LkIAEpLjnxWzAsKDC0XZa61iDOIIl0uYiNA
U+UccjnfGIBfL5GDH6maifZq8mImTdpDG8RHYoN9ShflKSpQWY86Us1HWNDw85SgPxsPFA2+qK8s
W+XyMyySQNbIrZlDnvdh4+0+RN87qzcKn9WF5rlCyOHNSp++RhNCdjc2eM7RWZ9H5tgCM4UCMatL
0WB7Ub9gWd4w2ItCS7+LrJcw5TSAfHDADRnkMgDt6XtCiLzpMAunRygVTZJj7lyIxTw+9BJCOVuQ
IxvXYs44MYOf6/2G5xK2yXK3HhWIhsFBB1+fikV2ugza574hjmGLYD37YwXvH5MjapXx3hiDwwVS
ex/+nXeKTkiDd1t9Yjiu8TAbj7YDJz+8oEuS9mDG14MPI1t/IPNWXxLyOz/ppcdECy+FN7un9wo+
Uj0jP/ejYX5/7BBeGscKeEaY6IycWwm/bSFiGLfaQOyXYkBrpC3Z9rcgTlwJMoffFTLxtG/I3fRX
aX+S2IC5dHmxttEdAj4wYmLpAk9pg1sIGTf2kTOIVzC6X+3LtuHzjTROeRXzRb8osDROE3Jqlk2I
1Rg5OBSBHgjDaSjmr+EIoKYKR6zDmdCpuK8Qtsd8H8zj7uItynnoAEsdHyna3i2W/uzegQzTHgXz
3QIz5f0SalWwoIPDnig9JZoNxnd9wm38OQ6DcsEZnLraJ4rfzADDjstgJoUWQlax0Lm4Xzvwvds5
SuBYD+RYeDHsT2cBIREiuk7c05D5OjphXuD4YaQDq0DmwcTEALo+zJZw6cGr0q7Ic4RXQSxCMsDX
yYn416agtLj1ATze3zkOgcvp8zccedBl60pcRqIJ/ehhLR/b6EkCfkj1IRzYiygYEo+M3SJ4/We6
3iGhCk/UGnDFOLxvAUye0okYmkho7zg+L9Fr6gXDshbNHB3xF3LhR8Y9dyl1mvG38vf5kdaH72Eu
KmKBo46CgME5KkbzWcXQGYFAlF73i+H2FC8QzrcncR+RCvj3Y9fCrxLskSHczWQOvciGVVa5KJF6
T8eHUOfgm+dhUMPoq893k7GlgQlaZJ9vd7rMxRhDX24OeFchs5mVSWqB5ZEoYK+UGfrn/evD6Oge
iWue7jod77EhtxdqEKPRVG/tbpUFcXcoAsxQDQwiu9hQIUZCLuVZbMj5XKRg4ccv2tbPo3zJ9sC3
ZkxMllR0Wdb0C7vgmSL9alwS3CLnDvK7YiBtfybF3IapL12qN8HYNkKwAjGpYHEWj8RI+UKfa99T
gASDFKmTaBX49Lna8Co/nQDmjFzM5c5h4L7hG+T2sl0s5pkL4AA+x239nnRSUcRJ2/snQRDd9Qk/
+0oSS9tFh+qV0aUYTgIQdrKD0OUie8tctDEEh+5JDs99XVDrwjDg1skBMsb9rZlrttJkNzt+kNrl
x2QWXUEDZ6V5BfR5unlrCuYMut3YkvPyrvSlVpz7X7335GtT9A6zz4Br9hFSmvWd4KjxY1CAeh9U
RjzquHaFELZDViCt82dvWRm2A/fmipH2yEa6LLA2pGqnWkh5HR1v0Q+2AZvUPOBZ3qsJHWiwAuZ2
AcgE79UbzxcDQyYxNWTvvu+hE1K/Bq+091ExBq1OL8LVhtq62si7sFMx7uE1hdUYhARF9ZUutaLe
5TNi/E1/tGT3EewQHmCckYM/6t46Jk0ML5V2DlioHJI90T8urELeQMh4fBI6VaQDMGJewfsbyfro
cqEBUZwghK7qCuYDUi1pYk8qCRbRTri7mNjACXJIlPhtexORulykRImIzrWUrmMyxKCO4JMcttfD
usNAOKemg1QJ8nT6+YnQvoeBIIMxWY7m9AXP2x4gUx4+w5IeRAhL4zwRpCpzsWjry4Z9XnZk+3nQ
bXoEkHEakDEflWZuxWEWt/qIji+86kszfX24+Q105U1Fp8egSmHUVzlyzPxV4NROUhCFoYxFATTF
9u8DGIT2B8u7O6JdHou5dNg7PTqW3L5Z8RnewZH9TEizRm6Y3+z8Bd+ODTEz3y1KRmcfSIdj/MDV
6/jx5vl1SeHUwF0wfzJWnyb+5gsA+B45U+054FPcz+Je8cVg8irNW/vnEkLz2zPI4x49+LSFrsjx
uYqQ8u3dZvHb9woru+uIy3+CYbyNsy89ZykgihwMwwoXdYUC8gnS7ToAa3frLWAlDCGOmZvFfkyN
L9z5jYEChmp0zLzPCntBrolaJK/i04ZyB5Z+sYinzllDPvqlgl6eBcjE7XOg7++Yw/FdnYi7bB0B
cdeM8k8PzISPwPo8PSrIzq8dOag40nvpeKxhXpQT2ep9sr6K9iKFHesHIzjg4c/fVItwJs4wN3T9
FjsFtDzug/cyZ97aJXEvj6Vtk6vZFMVyclEJZJj1+FUwSsNPqmHA5ywERPlkD69nuNCXRetuoMCe
rGEP83WGbiESpDHHeJhHuzBg7E8l8rb7NLe6GIM44j0s7L6HZqetkw078n7j0wQ8uqbv0x3K7O1M
vGe46hRndgpV7vRBR0V1kqX3dwp0lWeDkFz0dOGO9xCyX4Dxc/c8Jfj99TQITN1FNqxcsOmbD6xs
m8jq1ipZb4Kdw/fT5omrS2Uyd7Z2h26RnXHjdpbHfRpfg6+v+CWbf97qjxHD1258EFeYOo+6OxhA
xToDpDbtV192OLXAuxmP6LEXhGJ0GDYF5+dbCOYbDvXxHnod3F/uWQC/GHjrzpwkwH6zDCny/pnM
48O7wz20FGIPjKrPx861xJpqHHG96y6Z1iSv4cO6K4EUIGHATnpS4I0NBrx2fuhR5dJl8BFxx6At
mt5bL0EfSIV2PBAdRArdBXLCwyM7TAFj7ptk/eAygMbR9Qj65F2ymuorAHfGr5EzqzalyuT4wOsi
ij+vcRwm7+JzkAbPjGjR1xr2NhDuEF6nA3HuR9pQfLlx8KQyDxIQ3dQn8wwDYBNJCXaX2R9GHxc8
UHlRIX/+fPOLcJQGg6jg5Q9cM9k8LPX1hLH43Cfrp7VWOM5nD+/PteVxBwnbgH00T8xcBRMskyu4
MP5+FFKWV9YjKslGKd07X8x0zrdZqEL//A1SeaoALI1CC5flBYkVSkrBFanvwlE9peQ460FCKVtV
cioSFf3u47T5OQl0hxv+XtqUzmPKa5B9oZ4gt1GGVU/9/LfeKH6wWsPjWt3yBO8EI5jbZPG8jyBU
lo6Qe+WrYu7cMwO3+kVM/yzq39weIJDNDhEbBA9v00cFGkfSBNJYPovJnqtQ3vwCUfRK8dbno2Xg
ECYqCq6CSXvWU3o5b6MGGQ3ng2XTa6hNw5V4r0sFPtNHisHYMgxSImZNaAsOAhS08wMz4nNfrDI9
xzAodAmZMvcYcP9cYjCv2hTAhjzBfJ2FFao9WxLzuEoDzddUgjRosmCP8nMxza8FQ1c3JKTqxYWu
s3mLwbrDT+RJTeXNnQwhXDgnIXqe6ZRrSJbC5+Af8L7ni2G5i1wF724rBHxwTLw1hzaEccpISMnR
XscpEDLoGKYetMfA15fXK7zLyCmvpHAEM9krNZhh3B8+we4UJcOq1PEFhuv5ShwmM+iu9JMV3Kn0
Ie5YqsnnsXxXmATxl7j44oD52GmWPEofA/mNNerjTrBdGBhzSU64VQfK+uP693nn021ISA7rVBbU
9YDljRDOBp9CKKqnDB2PExloyXcWLM7giOfkSukvr8vV26yJkcRN8Z14ppPaIS3Q+TyU+tAIUv7z
K0TV4xrQUqEtVN17hSGs52SNpwjL/iv6kmP8AMWYRCwP5pDJMff9ht6mRzPcFy8TOXZoD9y1vAmC
ig2X6F/r2Sz7g+JD1ol1LON+bKbg8Ezl8mE/SWyNXLNmO2iBrZ4g70u1gnNPZAYF8+mIdo1PwxTI
BQecWnljLp1Mj2aukMP5Xmh4qTJen7+GKkCe2C9iox0B0+n+zeBXP3V4LfYULI8b2iZAjjL6nUf6
88NonV10GE/cMG/1UIhRTAPx5Or6L5/A26d+/fnJccvzwLH6HJn8risWgL4d5NPzQlRvlBuyt10G
fvT5jA6tgcDGT1L4y5PH3Z3Q9RiWJRR1aULux2KK5f0oAyiWUx0w7VHTl08z5XDzp8R56RlY31xY
/vwwlpQmLuY1Fl1IWMHa7k9cLBVjjpDn+JGY4eNNR3xFPjwPYMGyQU/6InrXC+CwZuO518eEin7q
yt9lNkmqHVp9op49g7F07WB9sNrAa93QwdoPc5LsnVVfh/4Mof/NL+gAsa1zF7yz4JPvUvwVHxGg
6WqEQOl4/i8vL8EsCBAevJmYwvWuj5OipnIUxnLAX2pUjHTYK2DjRcQc9lxBcD2Eksc0IZbQs/WW
jK1c6VffpU4MKe1kvQPl7O+Iaw+qzu/0y0Xc6gdReXfQe+X6wNI+OfXEtIPGo0WSb1MfL4G4nBEW
+Mc/Nn9HXJOhYNqvrxBseT3Y1qOgF6nrpcvtzqLgWXF0nbvEgtt6BbuT9Enoeq8x0K/1M+AjnS9o
fzn6YJeuNd7Oh7eepzqFjRdGeL/5tyXcaQY86scAqViDyRjVTgV+/r3fqQsg1+hsSDSbOZRk+y/t
rMutA80eL8i9sVmy+TMDtpwX4X6cjx6NjaaCWz4lx5cJk7H2dQXKq0aISbNjsf/l8+X0Pf/5qa+Y
2T68GscrZjd/vtqL8wWOFBrotvlfbIlFDstcp8GOue2SxTlcxh8PC7gRv4cZOae7YDfKTILTvPdm
YsT1j2/hw0U+0JXuDz7s0mOB/Aj4YA6rIycZSgzw2jEALM+UcYHUwD0yE6PziMiKNrTW24D0xcxB
91h9F5ZShYP1/V4aKqST8Ltf6BD0Q0M7B7dw6Y4EuWeH6qOrAAP89FG7AS/Z82/Tgs3Oy5Eu9Z63
U9GVk6ChqsGw8TgqasEo/fwzazw+xRfFoStnbaeQgweYhHSy18FDdjiRow90ume1Rwpewj7A8re6
0VW4RwwcLnqD+y1vfan3tWEPKhE5F8Uq9o0gXaBzRisypzjzFtnBGbwGz5joC56HTY+VH/8jVuUy
yfRYvjPY9pP4stfpy68eXVucBq/LgQermNkB/LwvKsperwegXHZh4GfPXvF6omUzbZ8PuvebFVAQ
VXR9FeNFslXmtr2epZMkmBnwxCmPnFvxpu2P580hzIkVjaO+DuuUA/56f6AgsG1vdhyDg9pbToL3
c18n0+s9MXCfnHvMtss84NNDx/DhdFs+aIqEZvzpDt8NPmK6O36GNZDlAHqvsUD6Y3kV1JeOOVQ+
8ougJzgm+M2FdzB33woZ6WTq/QBmA4SmICLnBDGgeY9KKFl6guHm9/F4EzDc+ADx4+nS/OWVjd9u
vNXRZ3FEX8mg0osEG2/hCW45yDxgjAHLqMM+0t68IGlCiy5mXw/ja8k1CABtNr0KC/AZewM2Y9Zu
+q94nOjOipyQVCb+pmeUD8sRJDvdIPr5wzckU2oGojhCxLp31rBvUc3D+FxHRJ2J0yw74VlL6vGF
iLa4mj673MWCk/6Q0OHgrANuo4wR9Ux28UVznIY+bwIHhZubYO64V+nOxzsfsnfG2XjRWNAn9wl+
+oWsbj8U6+2sddD/Xi6bns76ut7VFE6QfoNl2GE6a6+K++UbVKhvZaDVOlUgGKodMoYSUHqy4QiT
rLY3f1kB0pqnHO7io7fxY6kYr0iCkDW8E6YhTYYFXgUFBuaJC8DrUtE5FkQJVnDpkf8W9mAWlbqD
pNxxRKmrAky5LFuwYjOWaEXAeAsQVhvqjt5hpuCCZD4UrQLfYp4QVZmMhh5EboUf2Tog+8fTyCjg
X33Eki7BZO4oqQEs4/uWL576zjlsE28gb4gB3yDp0U1IYVpJfgBpfxoWJgEzgBLNCVI/nU4jX46h
c10cclBNUKw7vCuhFkfHgGx8bIJdzEjTpwfIwo+8oFLj1yBgDB8FMDAGfmdOAuyIgtAF+bk+GVzP
w++ymgg943Mz22t6gdpkqOTcTmbzHeDKyc1+XP78wkc+hBwkflzi/fKuvKU18h4KVaTj5jphfe0V
cAfS/tAFIM8xwG9+gmDnsBPxX64+iPNLxPC0ax20+Wl9t6zl91efgl2mP4qfngPICja569Sju+38
yWTXHknxeWZgPERZB4M+t5CHSkjHPdPxcPbihGgPth6WX39D2LFOQLf6NFyjswXRtxoxQ3YzJdFZ
w3DnPw1izraYrNi7VnBbH/yrz+OmB9Kl8Sx0SNPVo7UXfaHMPs7Bah/4Aq9VxkPy9RWUHvfPX/3f
vg0BtF9eAz/+BQ8DLYKaOa5DyxdFBbIgZ5CTEDXZ5bJsSNFyDomGbymlQvqSYHF7J8RjTx7lKxt2
ILi9IuISOiRzMvcutHMa//gzoFpea/B6BQ/MSflE10MehcDOlzjIztvE8d1wNUllPjWW2ObjTd7F
4CBxJhOTqxqD9bWms/zrp+jruUv+eOv72HjBr/6sKL648ARChNzkm3tUZiwLDnm3TbRUXEJfK29D
dtZugSCVSTIloT7+zivx2+eRzkd0HUGn9zryWutUUDP7lMD2dzg4bf2HNcmlGvIq0sjxxKTJLGEv
AzYRlD/+si89R4Hvu2YRpXGiYUW2O0qWN0XEDay6GTmfEwA+1To5xId2IDmz56F9/jZIu3xYMH8I
ZmA8UbLxvsb7PHLpAjV6qoJ9dA/o+uYuJZC6OsBFelSHcesnwM/DbsgxyF7FOl8FF37bq0icvkaU
Lh13h8sg7ghypC+lXBYyULjZCTls/SDMuAcMWvxw8XzDszd+pmsJf/p0pLmQ4ODt83A59Wdy86pa
H8v9uQSWNNnEfq5A/+BnVUu//Gqxz6ZZJ+5jwflDUSDPOk5m+BJbGDTJhRyc49dbfvlp4+dIcbMm
mUL1ZUH4OqTEqK9eQulw7GG0nELMuk01TKncbvqjJnjP3ZqCsIrDAzwEDjJ3jQRWVt0xPx7068fq
qzscLyB01H6r7/GwTqpvgQj7FXEl+z2s5v48wp0jT8G8I/FAfn6tiq4lOpxrS+fcx86Hr2D7xkA+
njx6sB4rYB/PZ/DFlw8dFUFR4NYfRaZwZXRSPHYjVD6XI/F7xQLtyeksGLhljW4Tm9GVCFIILsbX
xfug9xpc+rILPHB5oqNX1d56IXseDobEEX+n7xM8dNodxAc1QwcUPYu/fvJPn5XGWRos03MI1/cs
E/vnN9GjvEPPPFZo67fRpbhvevFeWQzPbKvPR4lfIfkGyubfombe9BZwWLGJf2Zbb3q9LiW4aBYl
gW3MlJh+qcHtfBGNx9dfvmphff6+g6VlB7Bw52aUR3mhSBPWyBvF8dCDjY9jLFg7+utvwWqnW5he
jUsxbff51y9GZ6qpw7L5I9ALuUu89PhsMJ8rK6z9OMdNz/H6nJTHGFb3cESG+7z/8m8LhLyDwQ5P
54EeXyGGHsifm78uE2JNEffz61gaS7XgPd8LwZbnsLTxVQ4YYIU/PqZOYles1zc2gOqWFUHS69Vg
fhZtuPFPcth7+2auVbmDRTxqJLNerb7lmRZu/UDMs099wM/Pmsv/HxMF/H8/UdAHLiaHXW96fPlg
XSDT9kDuRLQBfeHCgJ3mGcSHpQf2xdlxocyiPXEjdt/QNDjNUH63dvDyvBmMxdFh4KmTVDy/zy2l
OVOOgCdvL1iy6Dqs+tfOoXItO2TevIlODvhaoLWzO7G9/gmmTz2PUE8ijdh1nRfkzcQ8BKC7IAPh
UcdHe+IhwoKE+7YWwfziEgaKj3ZFh7Z/F+RxTyDI10YhVmM+msXyvhUY77aFnyTK9CE4exoITlaI
jnl5KOidKS2wvR+SRV5XEIcIKZxvS4jsrzkUaykMNUg5ogbXyVQ9iu/RDI+LlSKnqCMwovQcw5fm
BMQovX1DFrNdQaWcDWRW3rFZHl8Tw4dwslAQiNMwTh6OJeq9JryoZ6XhryzbwmMGIvyeequg973S
y65szcQzWAJW+5nYgCDYBpJS+x4O+qmHspizRPlycTEHp/kuVXHtINPwomRhJMeAaGeoqADsG9D9
qZHgsiw6MgLsAXLDaQrtcxwh12EvYImGaobatYwDKIsiXa/9aElKkxTEebP3gtwOygrtr8hisTVr
b10vVQi8mzFg8VSvzTh5XQiq9qygw9BbgL6YxAXndOzRWet9uubPSyYLx9XES8t9vAlKzgWo6v1B
jMQTh+8gfDI4vbYJDFKeKdkHlxJm1hOTI1c2+nwxTgwI+okhxs5LvYEp+Qu8xg0KpL42Kf/pn618
+9YtMq7YLcjtXsbw6XoUeSXre+tluWDQ1S5L/LxcimVcHiGwn6aFdDfqPVoHRQe7AwsD4LCYTkM9
X2Dun5iAL/u4mc41qKVpzyzBeGPrYpGXdIbr8F6DaSzbAot7K5b4z5rg5cZ9G0pPYw3AsbgGSxed
9VEs2hJev42P3Ad7GmYk6yN82hlEh2PvJVQ8NR08CVgg/iqCYq6HN4Sne7NDiM9Gb3WWXICfu90S
Z6oxXb0lb6G8uzBYDsW9R+RTzcALHAty9kwxGTtZCeV9NPso2kcpoLd7GsI0e8rINL1oWF6uAaF+
uztESzgt4Tuy6+Eeva1gfUR4WEW0YhblEkOMHr+HdXzAHtZzNgRlLcp0Nm5mCb6MfUKHQz+AVV8S
HlyEMSdaGx3p2hM5A1vHOmCHbBpmUmANsAV6I//FPj1qHowKBBrw0OHbd83wvecXAHZFjPmdWQ5T
vkoQ+F9wDpitQ0gt/FhhJ7kwGL8lBpM3fDA8nOMi4HWv1ydV4zn4qe0nCnfRvcCZ0N6hoZYqKiD7
1md01Dl52sOFBFp2G2b/NM8wmYlLjp2YgBUSyYc1zD4IXbeB4OTSMgBJkkhUyh2KlqZXBhpDuMO8
5b0p1c6GBBJJipC9Nz/6chi+GRzeskkO2OT0EbaXEsB3Fwe7bb3fHpk1OefOezwM7DdZHyzzheVa
j1j41ld9faNdLQG2vaLDYiZ0KnMrhsgxDkSdOFtfz5cxBV3mKMhT6tqbJ6+Lwe6z3jBcymOyJF7f
g2L7zqz7ZtNivT8YDlxSfCcux67FOrHwLn5z94r0OLLAyhBRgOr1XiL71CveIkiuBgfLTgLxaHb6
73wA6xy/kBvUX53WL2LBD+M+iCl4HzqITKjI8htJgSjX4995g7YXx0QbI7+ZTFCPsvOxmL/6vVpR
cZEKt5KD3cULwFLnxxQ++AqRuyKihp7xLZaOkXFFyTF6A1q97RgME5Vx+sZ9sgqsJP30BTlafUrW
7+VTQy2J/GB/NfcDJafJBmeraf/q02Ks/AWiXGCI2XiTPrsn0RCLEmtBi7EFqPpYKlitDk+OF3EH
6OngapL9Mg9Y/NU7YTdgsDZQJ0ElusN+m5AAAmoh2fQgWbKVtrDiKxNZn34uxuNOaOEtqL9IvXHf
Yf4OGIODap6Ido4QWK6SNcJxWiiyDv2Ozq9JqWWavAcs1LVUDOVbkWRrH1fI5L1vMR9e4h0Mdzsk
d10k+gK/aiZfK5wQl6nrhr5NnAKgtxXSABYa/KsHolOMARxF6OFH39hwv+/YgB7xbljN3Nag8ry3
SKNYpJQGV0NakjeL/LRcPXo4+D7UxPsRP/dRSueQOxtAZ0MQyLMYe2uhXnwAH12KtBTf9XHhYktq
Xe+EUCsqzT48u1hgWdQgL2WPRXuR3RI+y1QgV8N862vTf+u//TNST6ALJ2k9JIhpt/UhYBnqOYf6
ELPB736thqS48MU7JtJfkaGTrZ7Cl52mKFBENFCbFS5wt6wF8q2Sglk2whRaV7NER1fcN6sbxTPU
xPJIVDZKmuUj+T40DqGIAlbskvWoxjm4lmNGgr34/p2/EOz3LYvSwdsBHC1RD595rSJnO9/L3nVd
6Z7Vd6QbUU+HmLlBuNvNZSCpbO4R9+2NUpXVLhZoLXh49wA51B+RgpyFLZvZ2wkSZE4XEXmPUkro
82Db0DetFimXc9fQ8/3kQwfFTmAtnlqMz5tqQPNlvoLqfH4nZLsPUPoUN0xdfAJLWvQ5jHpSBUPN
esWClzsEyTgdEWLpBUxh8dFg3EmPv/WeOPVug3ScdKJnmBuWKD9w0DMNTBSJIxRLZ8uF+QV75HAx
z8XaCHUH3tilyD2zPMB237WwgpmM+9V0vRHt5vB33vAe9G2Ct3oGVgAVkmzvj9xfbwzfrPwl1sMz
CvrEBYZfzS2DdcXX4ff6sH+zDdHE6FvQKy6h5K7ggwXWPACM7Z6H6V06Bsu2f9RgFwWmneQRW+tr
MOuv1YDeYvTEb9jnQC/BzZYCLBpEIedmwEf7xcnS53pDiNCiwKSvevmA4ltAJxwOi1o0gdw9WBHv
p75LRoGLXHhWxpGYjPfxKC1ZKH1ytwnm8Pymi+w6AexyRw122/1cd4im8mOtAlL+zt+2X0ClUYQs
4j0pzd4qByN/6tDmXzxaBmUFMWU6dPBMsVgSr+rhozo7CIHM0/HpMvZwkLZnqKxl08xy0XDw1Akq
skHN03VBFIKrMIab3np0ebvGV9r8GlGVc5UsbX7UoDokScBRL23WD5KDn/6SwMhkfdk9TxDq75gh
h9C8DPO5vVtiykh2IIhmP3x0MCiAXOkV81HPeeOTSzvIN+8jCTJx/NNfcLKeAk447waWLhZjOHR2
QIza48G3YRkNbJ8XB534oVM09CtsMyclSnZ+65SWe0aUj4WJ9O3nZ+MkKSDvGhWZZ1yBj6TeAkhe
9BJAgzUBB9vwDl9hFgcwL6NiEZdTDr2X8SFew3rNun9bFdSeZUjssb40q93jDuhq6aHAEjEYGdD0
8FiDMNjx/cVbTI33gf08WIF0rfth/u13nJI8WDOu1pf5q/swZyoGWR+vbhYoqTn86RvNo1dDZcjX
cPXeeywSVtYJLVkGeCt44D3tzYbe93YPq6D2yTEu7WERc1UAnmMRoq7cQeftHrc/f4WZSnSbsU+T
CmrmPSMurk2P3s42BxXx/sTPPuKbNVKvK9TU8kTyiD0Pe1jyGPo764Fhwhr6LteoBZxVpFh619bA
+Tffh9iDE7GHWiyo+jYYOcwFjlwsMyxmw1wgLMYT+dPDtbXrXC7H8wu5CxsP+LAUAUhtcsA88VTA
zeDFQy5avxiuYpGs5ygU5M0fI4PH5kDds/4F2+sjt2Qzb+KizIepJW3PQOmzZmSLpobfhE1+foPu
o71bQfNmvjGs2FqfozSDf/kgWb17QZ2DLoBvbZ+Jvy/HZjJqJgOc92qIPuO5WM9qyEE4XV2iWNy5
GCEXVnITOzeELNGga3f5ujBL8Yr8VHwAqj8WX/51TH75E4f9K4MlX03EBSVbYMO1QzCwsoaMDz6A
hXVtAY4eqwYDx/bFKiPJAD8/lir4CGY5DXN4qsZtws5zCjoGuQaDyELE5szPQKsXyeErc9wAvlhV
n2/tyYWpP9m/+j+MlZGO0HodimD/MDMwX29uCo9YDIhWcUqyd8icyiaKlwC2olyMuM37v/smPthH
Mww4d6X3m50QOmUz7fu0qOG1xBlyDmY3TI10dGHdpiMpM1anu3XJUtjA7BHwSp8Vy7UGAfjtz6Ez
T8l6eexXeDwaZXAh5reYqzRdoUHjzRyYSrGkQ3WXt3qOMt5Timnvai4s/dOXuH39ol9f6BS4AMbd
7usLkC3/y13gaZjj8auh42uqQN1mI1KCc1/MpmzGMLaEFtl5DZq1fF40WLmO/Ke/JN+rIdj8I9LW
yANkYOIAPtqz+6dXE1RTAb7SLAn2Ut9uefDGQFC0N6LyETeQ69m5w3VZRSzu6mPzy8/wwjQx5nmv
KrDASoL4LDMh2J2xQse7cVMAOlkWMc+9XJCn+Q5hagkh2TpCzVYvAqgliY/3a28Wf/ePPRwHZPbe
WMyMN8xAOhbNdp+O+vyelABKTlETLcdyMh5fQgUv9+ZMDr2Z0jUUphzIj84NgiYTAN3ymkxv64rc
T23pvVwMHNz8PFKVs1LshXsYAOdmsOTwNPlkAcvJgHEuVSSIs8KjLn64UoXrA7K3DtYqsVIHFwRD
orRcsvmltoZJT/yAlbPvQObXKAA/EwukeVzTUBsJFRw6N/j5x2Fhc4WR78b5GuxvfQ+maRVcmKbE
Is7LrIs54M6Xn78l2j5ywXq6jF/greIj4EOv8/7qi/ZObFzlXEqXebn3QHuVUUBXj0nG580x/uqr
P4pQX4Z1vstJSkLi5+JDp8bZ6KSffwnMUgH8QU0y2b1ZO2I8saPz9wfDA12+G0i5clxDk7OWAyIv
J+LytQ7GZrI58MsPKBabZmy4MoR8tGZElTiTLk/pWALnYzDIS1jstXMax9LhHBbEJ+VEBzM4Q/jt
7AumMFK8pfv6K9hFc4XZB73RlT8HMzC9eA72H3OnL2cJKUCV7xeifM5GQs2HIIDxRHksbzxpcYav
JkSd8CE/v7rVO+Z3H/HiRYVHzccsgfbrhQG70BzMjux/QYdtGYUfbtWX3LVqeAuqL94f+oHSfO/E
4HR/7ogvlX7S12l5B0zSaXin4tZbUAwx0HcHjljIs8DuIxmBdF/rS7DGUQhWX8CaFGiih5o06ooZ
p3kHr+2YolIp04buIDtL96Cq0GnyvGTjGyu4Kec6mB9cAmamZkPgvgxKvI2PkENw7iFaLAXLjch5
tMDlF7p6qBJjxlZC7bevQPl51XCtRPHmF5YYHnfGCV3OJtZXru8VKaufPbI/pqdzxnSsgPq6F+h4
K9/eGqnRCnen9YlpEr29tX4wPvjlt9JkLZ2wkPHhxhOCjZ8NA2eOd1COp1fAROJUrOfoIklb/giE
yMSAHsjcQ1QLEDmrWel/fpycmRq/PC+kVEVLKe+WuUDoLVb6+GhLDm5+JTgdcJMM/tvLpYMXl0Ed
RXNDmZLJ4ZC7KHiZ/aOgD/PdCpu/JMFHdIYlKJ4phNHVR35UrslL1Rge7j9XQPQOxx4+qxceilHx
3fhLveVJ0MIVMRbyDdakWEarBUfLdZDBYmOgC3ON4S9f/Pn3opYE+MBVhA5GPxZre6nvMKqlnhya
vvdWI0pGaeM7mF+8Z7KcvD6FNfZeeKd7sc6pLymHgrMayPFqrphOoApgxjQdCoyyaqZjvD2AcIhZ
LCci34zd0b5Ahj1OWKrZXYGRGltQiAqOoEs2N+vQf2IQMUKHwojbATwSDkMJtDXRSDTqK2SlGD6/
Hg7w5s/msc0hPF2wHHC1l4H50aY8fD9YQrSQq7cnEa0Ygkd7J8GU7b1mDqILeNopROhDS6/dGVEH
TRKOuC29/UDGe26Bz4G9B5/RVCjxiKCBjWcgWzT7hh72vgEveZPh1sb+MO+MqJWDeYLET9jW2/hK
BkHTFqTc/MN0WUEMuf3rRhQ5uuk/fw26MbOICjjL4wFaL5DK6xSIen0a9i4SfPjJ7QZFMTd6f/n/
1D0pceY6GMD57Mw/foaUPTd7s20u6a+DGMxfbk2WT3Re4fKiRrA3ej+hADI8yOF4IIFeqsWu+AaZ
4CwWxJueJysVKgM2Xycn6saPV/cZc9BxDjo6wF7/F1/klzUKeNSnzcwaF+X3ZyyUNfDGfRqlorMY
kPgdqxbcPr1mf3luOornYuX6SoHLazGwkJsTGL2jfwe2efCDlYuGZB7TWID7ZT6gaI52Ccb7A//z
5z8eSH/1AsqH7oiOmihQzPW9BpE9iSjQyqc3m8fjRdyeyBYIRs3QXz4CFolr/L3X72aRJAfD/bJ1
EPcsAMMlOLkwG0cS8DsTDtgVcAZPlmBhJhCPw6IOTQgCCejEb0U5wanQzvBajQkxztilnHc07hAe
rwgLe9PRiRk8GNCxLBcIfn1r5m9bxJLThBYpvLKk/PjgvlDzkmBb36pZJ+GjwI5LDXKQ+tYb5+E1
Q/QxNBLJ3KvB2/oDcSlem99/e6sh2S6UDt2A0C4bKA6EFxafqzOi7Tx5czmpMwgwMIJ+63esjloo
kD/NZ3SRa774OJrcShsPQF5UwmSGXmtA5XR/kaAXnWJ+cKUAafIakM5FzwITFtrgt7+ib77ApNVM
/8vbxPPZoOHJGWFQCqeWOIVpeD/+BBkWTQS52Vrw/DlYIXd+1cF65xS6q/LjFwy1fUQq5F4FHcxp
hFeIIyxZtZfs+OgmgcSS8t83OAqq730Md6f5iSMc7ejYcGkMF3NxtvoQDnPAPS5wEmmPpX3detv+
pX+8pNv6M3M1qS5cAHSJlkZhQoVyn0JVvJ+JTiPNm8TllsPz/flEZoTVgY+FyZB+PE6nUe3hIrrE
0F6BvOVnfdjj3RSC0ZNVZLy8bKA2Pt/h+lkBZi2xBStzON5FgXR7pN4jIVm/RNZgbWcrCTrRAevt
MuQQ75k3sUXTbvjweZWgfjyAYJG4F53dye8gM114pGpcsPGdWQBODATMulm8PWOTvQP9HTLB4NSq
t8+ZFMObW3+weDObYT6m5xb2jP1BvsZ2xbSq9xJu54EYGXab8uW9a0goLDeeyyX0drBX6LpgxrvM
I8XceIQDjZG9ibXxsuUIniXU5dJAh1Pvbjyh7eF8hheSnryrN4UrrGCHXRmvm9+jKNieoZoLDBZK
cyrGSPbyv7yweBHwelU+Cr88TU6y1wPudVNKmHF4wpvf04d6r2z3mYiYqbNLMz+5sgNnBY9EK7in
1/fDW4M/vu/J7LtYXq7PwI1vkh9/3lk1o0DzHJKAPdOHvu73QSfGnfAI1hFLRZvcvBCKTUuIduKe
YOMpPCzS00qMxjvreL1UMcSIwcTY4xelXvDQfnw+2NumSJ+H4ZvC15iGxJJ6rK81YlzwjL1l42c7
Ot016Q6juzQQ712Kev+8ORZkDq2OnKROdMw+Fg4wj05B2orFZl7bXPv1F4PPrV6S5QQqH67RypBD
2fcDPeNTDBNLyFE0cP1Aaqa4w4ibHgGbirq+8QZbns4Mj1cp+g7DZa92wNFDD5mPHnqjexItwHit
EXAI+96uWiUNLgVEmNl45Qy5SwWdfawhdYlOwxiaswUbO+sJAtng/fwUfPnpCel+dBiId9A7+PhW
IdLHSGtW82v/q354n/LSkF0QzvDGVw3RrhEp1v3eamFWjQv+OuyF0u5eKECfTB7pQ6QXtHq981++
R27KnpOfXwQonPb4c6ujYrRPYg62PIlUnxtpd1CLDJInPRP1yE06Lth9CFouu6AjzJhkZLiLD+Gp
2J7pKarF58fHNx6EudbLimWXa7V856sryufaaPY/XrrtP7Js71BQfjcq0oexH1imZUNJ/Hbv4LHW
AVGZiBZkYHIfOrIlEU3GF28WvBH/9JVYjz72xvAk2DDNGhl5W95fdrlbyQfzkCEk0mvTxpOewrZM
c1xL0bdZplWwYRt7SbA3zdzbeCsDb8I5DxhbDBJaBYUAF5mqmOnFT0H8s55Bfv92cHvGXzq2RwXD
W1y9ibrx9TUT2hIqTVQgTePaZnX7Lv7jSzuh3zf4oBYp+PWD97feBpxtiukvH2JglvKwMF9Vk0W9
5RDysnig8Vu7w8IYTaJr0afApdDUYP8pAAY7tm+W0g0C+OsnFBs/49Xc7uHGN/B8PVtgJecD/t/P
KPi3f//3//n7LQhdf7u/tsGA6b5M//w/owL/zG/5PzmO/yfh/35bAh7z6v6P//jXEMI/PkPffab/
NfXt/T3+4z/+ff83bfCPqZ/y1//11/+2/V//+W//BQAA//8DAOaLvFiFYQAA
sVmsxnS2Jp7tP83JfkkKIsZYEvs1Pctvvk+wLZYGfr8r7I+owSEsQvp/AAAA//+knUuvo8CWpef1
K0p3Sl+BMRBBzXiblwlexrbUagG2MWCMDUQAIdV/L+Fzu9WDGnUPM5XHacdjr7W+vc05bvnQoLVf
kRgGE98gtSO1TodwEH79loDlIzwQQzMZ6MYWQObLt4cd+hxKuPGqgNNqu1k+ZX/5+deNJ8ZgZeTF
ggoz+MgGa5qs4Nv1UhEdeeLIatLMt/RQAVnhHsRP6omOm178rb87A7eg9F0a8MK+Tr9+VrPxuC+g
9iIht+lU8Oe//MjTcV/nCNChvgRQWtYz8iT3k9DDMaggI2cBOroXNMzNmldQXnwVuRuPw84s32EE
iip4qnsMSEy6TNzuz18/e7deBAlufPovfwxRIV1++oC0a/0eZrUTOHnTX/zjJ3P6aVLIFo/nrx+l
r+GYCbDqmhRzcK0GutzcDgrXzEWaz7+K5YpD4c+f60WaevO9+0rQdvgHOTCfI6XaHuZAdpU1kJru
SalWTr10IrKE9Hv40CcaZRbMwtONmE9nTGYvNgwoH74exiGuvOVUf0LAdNkS3HZd6/3dr19/Wbt7
07CdHx6GUBiwuPWrh9uBG+EusbgfH2qWa9m24OevVI1R9DkU3fKXN4hXrQZdZkg1+I/fVMB//o//
h4mC3X8/UZCb8xuDg1Z7i/FNcnDJ05DEl88DtEl5DAFP3BdBUDkUPNMLGtCjyCBIwsUw1YpayqLs
35D/xYU3Fw6PocMyLmYXbZcsVdz38CCOLDpIqgSW82QzMOXbOHDNE6NPy1r2EE2WTrRAFovv9XVp
AXjVJgmWMB4WqoBMir+DgrxFQWB2udCS+cCKie6rb7DocO2gpxlLsPIvfaCHXOphjl8lFotzmEzD
m+kArx414tyKAx2PKMLAvT8s5Nz5T7FkvmcDPAshSYfkBbDLVqEsntWSBPv0A+ZJcVJQCGwVMMn4
aMY13jrwkbuioANZQiON8GDu+oqYQthvHa+ZAxJcxq0DK1Is7twMPm1vR47zaHhTx2QpvEWJjacB
sMnk1XEon58vIaBpPDbDIKc+PBFJI2p1VLy+S6ccik8+whx2Pjqhu8KAzxh+SRFVafKZizGEX20N
kB6Vn6Q/3W0In/13Rgcy3pvefPYxlApyRWp4q5N5+lwEAKUlRz4r5gUFhpaLMtdaxBlEkS4XsRGg
qXIOuZxvDMCvl8jBj1TNRHs1eTGTJu2hDeIjscE+pYvyFBWorEcdqeYjLGj4eUrQn40HigZf1FeW
rXL5GRZJIGvk1swhz/uw8XYfou+d1RuFz+pC81wh5PBmpU9fowkhuxsbPOforM8jc2yBmUKBmNWl
aLC9qF+wLG8Y7EWhpd9F1kuYchpAPjjghgxyGYD29D0hRN50mIXTI5SKJskxdy7EYh4fegmhnC3I
kY1rMWecmMHP9X7DcwnbZLlbjwpEw+Cgg69PxSI7XQbtc98Qx7BFsJ79sYL3j8kRtcp4b4zB4QKp
vQ//zjtFJ6TBu60+MRzXeJiNR9uBkx9e0CVJezDj68GHka0/kHmrLwn5nZ/00mOihZfCm93TewUf
qZ6Rn/vRML8/dggvjWMFPCNMdEbOrYTfthAxjFttIPZLMaA10pZs+1sQJ64EmcPvCpl42jfkbvqr
tD9JbMBcurxY2+gOAR8YMbF0gae0wS2EjBv7yBnEKxjdr/Zl2/D5RhqnvIr5ol8UWBqnCTk1yybE
aowcHIpAD4ThNBTz13AEUFOFI9bhTOhU3FcI22O+D+Zxd/EW5Tx0gKWOjxRt7xZLf3bvQIZpj4L5
boGZ8n4JtSpY0MFhT5SeEs0G47s+4Tb+HIdBueAMTl3tE8VvZoBhx2Uwk0ILIatY6Fzcrx343u0c
JXCsB3IsvBj2p7OAkAgRXSfuach8HZ0wL3D8MNKBVSDzYGJiAF0fZku49OBVaVfkOcKrIBYhGeDr
5ET8a1NQWtz6AB7v7xyHwOX0+RuOPOiydSUuI9GEfvSwlo9t9CQBP6T6EA7sRRQMiUfGbhG8/jNd
75BQhSdqDbhiHN63ACZP6UQMTSS0dxyfl+g19YJhWYtmjo74C7nwI+Oeu5Q6zfhb+fv8SOvD9zAX
FbHAUUdBwOAcFaP5rGLojEAgSq/7xXB7ihcI59uTuI9IBfz7sWvhVwn2yBDuZjKHXmTDKqtclEi9
p+NDqHPwzfMwqGH01ee7ydjSwAQtss+3O13mYoyhLzcHvKuQ2czKJLXA8kgUsFfKDP3z/vVhdHSP
xDVPd52O99iQ2ws1iNFoqrd2t8qCuDsUAWaoBgaRXWyoECMhl/IsNuR8LlKw8OMXbevnUb5ke+Bb
MyYmSyq6LGv6hV3wTJF+NS4JbpFzB/ldMZC2P5NibsPUly7Vm2BsGyFYgZhUsDiLR2KkfKHPte8p
QIJBitRJtAp8+lxteJWfTgBzRi7mcucwcN/wDXJ72S4W88wFcACf47Z+TzqpKOKk7f2TIIju+oSf
fSWJpe2iQ/XK6FIMJwEIO9lB6HKRvWUu2hiCQ/ckh+e+Lqh1YRhw6+QAGeP+1sw1W2mymx0/SO3y
YzKLrqCBs9K8Avo83bw1BXMG3W5syXl5V/pSK879r9578rUpeofZZ8A1+wgpzfpOcNT4MShAvQ8q
Ix51XLtCCNshK5DW+bO3rAzbgXtzxUh7ZCNdFlgbUrVTLaS8jo636AfbgE1qHvAs79WEDjRYAXO7
AGSC9+qN54uBIZOYGrJ33/fQCalfg1fa+6gYg1anF+FqQ21dbeRd2KkY9/CawmoMQoKi+kqXWlHv
8hkx/qY/WrL7CHYIDzDOyMEfdW8dkyaGl0o7ByxUDsme6B8XViFvIGQ8PgmdKtIBGDGv4P2NZH10
udCAKE4QQld1BfMBqZY0sSeVBItoJ9xdTGzgBDkkSvy2vYlIXS5SokRE51pK1zEZYlBH8EkO2+th
3WEgnFPTQaoEeTr9/ERo38NAkMGYLEdz+oLnbQ+QKQ+fYUkPIoSlcZ4IUpW5WLT1ZcM+Lzuy/Tzo
Nj0CyDgNyJiPSjO34jCLW31Exxde9aWZvj7c/Aa68qai02NQpTDqqxw5Zv4qcGonKYjCUMaiAJpi
+/cBDEL7g+XdHdEuj8VcOuydHh1Lbt+s+Azv4Mh+JqRZIzfMb3b+gm/HhpiZ7xYlo7MPpMMxfuDq
dfx48/y6pHBq4C6YPxmrTxN/8wUAfI+cqfYc8CnuZ3Gv+GIweZXmrf1zCaH57RnkcY8efNpCV+T4
XEVI+fZus/jte4WV3XXE5T/BMN7G2ZeesxQQRQ6GYYWLukIB+QTpdh2Atbv1FrAShhDHzM1iP6bG
F+78xkABQzU6Zt5nhb0g10QtklfxaUO5A0u/WMRT56whH/1SQS/PAmTi9jnQ93fM4fiuTsRdto6A
uGtG+acHZsJHYH2eHhVk59eOHFQc6b10PNYwL8qJbPU+WV9Fe5HCjvWDERzw8OdvqkU4E2eYG7p+
i50CWh73wXuZM2/tkriXx9K2ydVsimI5uagEMsx6/CoYpeEn1TDgcxYConyyh9czXOjLonU3UGBP
1rCH+TpDtxAJ0phjPMyjXRgw9qcSedt9mltdjEEc8R4Wdt9Ds9PWyYYdeb/xaQIeXdP36Q5l9nYm
3jNcdYozO4Uqd/qgo6I6ydL7OwW6yrNBSC56unDHewjZL8D4uXueEvz+ehoEpu4iG1Yu2PTNB1a2
TWR1a5WsN8HO4ftp88TVpTKZO1u7Q7fIzrhxO8vjPo2vwddX/JLNP2/1x4jhazc+iCtMnUfdHQyg
Yp0BUpv2qy87nFrg3YxH9NgLQjE6DJuC8/MtBPMNh/p4D70O7i/3LIBfDLx1Z04SYL9ZhhR5/0zm
8eHd4R5aCrEHRtXnY+daYk01jrjedZdMa5LX8GHdlUAKkDBgJz0p8MYGA147P/Socuky+Ii4Y9AW
Te+tl6APpEI7HogOIoXuAjnh4ZEdpoAx902yfnAZQOPoegR98i5ZTfUVgDvj18iZVZtSZXJ84HUR
xZ/XOA6Td/E5SINnRrToaw17Gwh3CK/TgTj3I20ovtw4eFKZBwmIbuqTeYYBsImkBLvL7A+jjwse
qLyokD9/vvlFOEqDQVTw8geumWwelvp6wlh87pP101orHOezh/fn2vK4g4RtwD6aJ2auggmWyRVc
GH8/CinLK+sRlWSjlO6dL2Y659ssVKF//gapPFUAlkahhcvygsQKJaXgitR34aieUnKc9SChlK0q
ORWJin73cdr8nAS6ww1/L21K5zHlNci+UE+Q2yjDqqd+/ltvFD9YreFxrW55gneCEcxtsnjeRxAq
S0fIvfJVMXfumYFb/SKmfxb1b24PEMhmh4gNgoe36aMCjSNpAmksn8Vkz1Uob36BKHqleOvz0TJw
CBMVBVfBpD3rKb2ct1GDjIbzwbLpNdSm4Uq816UCn+kjxWBsGQYpEbMmtAUHAQra+YEZ8bkvVpme
YxgUuoRMmXsMuH8uMZhXbQpgQ55gvs7CCtWeLYl5XKWB5msqQRo0WbBH+bmY5teCoasbElL14kLX
2bzFYN3hJ/KkpvLmToYQLpyTED3PdMo1JEvhc/APeN/zxbDcRa6Cd7cVAj44Jt6aQxvCOGUkpORo
r+MUCBl0DFMP2mPg68vrFd5l5JRXUjiCmeyVGsww7g+fYHeKkmFV6vgCw/V8JQ6TGXRX+skK7lT6
EHcs1eTzWL4rTIL4S1x8ccB87DRLHqWPgfzGGvVxJ9guDIy5JCfcqgNl/XH9+7zz6TYkJId1Kgvq
esDyRghng08hFNVTho7HiQy05DsLFmdwxHNypfSX1+XqbdbESOKm+E4800ntkBbofB5KfWgEKf/5
FaLqcQ1oqdAWqu69whDWc7LGU4Rl/xV9yTF+gGJMIpYHc8jkmPt+Q2/Toxnui5eJHDu0B+5a3gRB
xYZL9K/1bJb9QfEh68Q6lnE/NlNweKZy+bCfJLZGrlmzHbTAVk+Q96VawbknMoOC+XREu8anYQrk
ggNOrbwxl06mRzNXyOF8LzS8VBmvz19DFSBP7Bex0Y6A6XT/ZvCrnzq8FnsKlscNbRMgRxn9ziP9
+WG0zi46jCdumLd6KMQopoF4cnX9l0/g7VO//vzkuOV54Fh9jkx+1xULQN8O8ul5Iao3yg3Z2y4D
P/p8RofWQGDjJyn85cnj7k7oegzLEoq6NCH3YzHF8n6UARTLqQ6Y9qjpy6eZcrj5U+K89Aysby4s
f34YS0oTF/Maiy4krGBt9yculooxR8hz/EjM8PGmI74iH54HsGDZoCd9Eb3rBXBYs/Hc62NCRT91
5e8ymyTVDq0+Uc+ewVi6drA+WG3gtW7oYO2HOUn2zqqvQ3+G0P/mF3SA2Na5C95Z8Ml3Kf6KjwjQ
dDVCoHQ8/5eXl2AWBAgP3kxM4XrXx0lRUzkKYzngLzUqRjrsFbDxImIOe64guB5CyWOaEEvo2XpL
xlau9KvvUieGlHay3oFy9nfEtQdV53f65SJu9YOovDvovXJ9YGmfnHpi2kHj0SLJt6mPl0BczggL
/OMfm78jrslQMO3XVwi2vB5s61HQi9T10uV2Z1HwrDi6zl1iwW29gt1J+iR0vdcY6Nf6GfCRzhe0
vxx9sEvXGm/nw1vPU53CxgsjvN/82xLuNAMe9WOAVKzBZIxqpwI//97v1AWQa3Q2JJrNHEqy/Zd2
1uXWgWaPF+Te2CzZ/JkBW86LcD/OR4/GRlPBLZ+S48uEyVj7ugLlVSPEpNmx2P/y+XL6nv/81FfM
bB9ejeMVs5s/X+3F+QJHCg102/wvtsQih2Wu02DH3HbJ4hwu44+HBdyI38OMnNNdsBtlJsFp3nsz
MeL6x7fw4SIf6Er3Bx926bFAfgR8MIfVkZMMJQZ47RgAlmfKuEBq4B6ZidF5RGRFG1rrbUD6Yuag
e6y+C0upwsH6fi8NFdJJ+N0vdAj6oaGdg1u4dEeC3LND9dFVgAF++qjdgJfs+bdpwWbn5UiXes/b
qejKSdBQ1WDYeBwVtWCUfv6ZNR6f4ovi0JWztlPIwQNMQjrZ6+AhO5zI0Qc63bPaIwUvYR9g+Vvd
6CrcIwYOF73B/Za3vtT72rAHlYici2IV+0aQLtA5oxWZU5x5i+zgDF6DZ0z0Bc/DpsfKj/8Rq3KZ
ZHos3xls+0l82ev05VePri1Og9flwINVzOwAft4XFWWv1wNQLrsw8LNnr3g90bKZts8H3fvNCiiI
Krq+ivEi2Spz217P0kkSzAx44pRHzq140/bH8+YQ5sSKxlFfh3XKAX+9P1AQ2LY3O47BQe0tJ8H7
ua+T6fWeGLhPzj1m22Ue8OmhY/hwui0fNEVCM/50h+8GHzHdHT/DGshyAL3XWCD9sbwK6kvHHCof
+UXQExwT/ObCO5i7b4WMdDL1fgCzAUJTEJFzghjQvEcllCw9wXDz+3i8CRhufID48XRp/vLKxm83
3urosziir2RQ6UWCjbfwBLccZB4wxoBl1GEfaW9ekDShRRezr4fxteQaBIA2m16FBfiMvQGbMWs3
/Vc8TnRnRU5IKhN/0zPKh+UIkp1uEP384RuSKTUDURwhYt07a9i3qOZhfK4jos7EaZad8Kwl9fhC
RFtcTZ9d7mLBSX9I6HBw1gG3UcaIeia7+KI5TkOfN4GDws1NMHfcq3Tn450P2TvjbLxoLOiT+wQ/
/UJWtx+K9XbWOuh/L5dNT2d9Xe9qCidIv8Ey7DCdtVfF/fINKtS3MtBqnSoQDNUOGUMJKD3ZcIRJ
Vtubv6wAac1TDnfx0dv4sVSMVyRByBreCdOQJsMCr4ICA/PEBeB1qegcC6IEK7j0yH8LezCLSt1B
Uu44otRVAaZcli1YsRlLtCJgvAUIqw11R+8wU3BBMh+KVoFvMU+IqkxGQw8it8KPbB2Q/eNpZBTw
rz5iSZdgMneU1ACW8X3LF0995xy2iTeQN8SAb5D06CakMK0kP4C0Pw0Lk4AZQInmBKmfTqeRL8fQ
uS4OOagmKNYd3pVQi6NjQDY+NsEuZqTp0wNk4UdeUKnxaxAwho8CGBgDvzMnAXZEQeiC/FyfDK7n
4XdZTYSe8bmZ7TW9QG0yVHJuJ7P5DnDl5GY/Ln9+4SMfQg4SPy7xfnlX3tIaeQ+FKtJxc52wvvYK
uANpf+gCkOcY4Dc/QbBz2In4L1cfxPklYnjatQ7a/LS+W9by+6tPwS7TH8VPzwFkBZvcderR3Xb+
ZLJrj6T4PDMwHqKsg0GfW8hDJaTjnul4OHtxQrQHWw/Lr78h7FgnoFt9Gq7R2YLoW42YIbuZkuis
YbjznwYxZ1tMVuxdK7itD/7V53HTA+nSeBY6pOnq0dqLvlBmH+dgtQ98gdcq4yH5+gpKj/vnr/5v
34YA2i+vgR//goeBFkHNHNeh5YuiAlmQM8hJiJrsclk2pGg5h0TDt5RSIX1JsLi9E+KxJ4/ylQ07
ENxeEXEJHZI5mXsX2jmNf/wZUC2vNXi9ggfmpHyi6yGPQmDnSxxk523i+G64mqQynxpLbPPxJu9i
cJA4k4nJVY3B+lrTWf71U/T13CV/vPV9bLzgV39WFF9ceAIhQm7yzT0qM5YFh7zbJloqLqGvlbch
O2u3QJDKJJmSUB9/55X47fNI5yO6jqDTex15rXUqqJl9SmD7Oxyctv7DmuRSDXkVaeR4YtJklrCX
AZsIyh9/2Zeeo8D3XbOI0jjRsCLbHSXLmyLiBlbdjJzPCQCfap0c4kM7kJzZ89A+fxukXT4smD8E
MzCeKNl4X+N9Hrl0gRo9VcE+ugd0fXOXEkhdHeAiParDuPUT4OdhN+QYZK9ina+CC7/tVSROXyNK
l467w2UQdwQ50pdSLgsZKNzshBy2fhBm3AMGLX64eL7h2Rs/07WEP3060lxIcPD2ebic+jO5eVWt
j+X+XAJLmmxiP1egf/CzqqVffrXYZ9OsE/ex4PyhKJBnHSczfIktDJrkQg7O8estv/y08XOkuFmT
TKH6siB8HVJi1FcvoXQ49jBaTiFm3aYaplRuN/1RE7znbk1BWMXhAR4CB5m7RgIrq+6YHw/69WP1
1R2OFxA6ar/V93hYJ9W3QIT9iriS/R5Wc38e4c6Rp2DekXggP79WRdcSHc61pXPuY+fDV7B9YyAf
Tx49WI8VsI/nM/jiy4eOiqAocOuPIlO4MjopHrsRKp/Lkfi9YoH25HQWDNyyRreJzehKBCkEF+Pr
4n3Qew0ufdkFHrg80dGram+9kD0PB0PiiL/T9wkeOu0O4oOaoQOKnsVfP/mnz0rjLA2W6TmE63uW
if3zm+hR3qFnHiu09dvoUtw3vXivLIZnttXno8SvkHwDZfNvUTNvegs4rNjEP7OtN71elxJcNIuS
wDZmSky/1OB2vojG4+svX7WwPn/fwdKyA1i4czPKo7xQpAlr5I3ieOjBxscxFqwd/fW3YLXTLUyv
xqWYtvv86xejM9XUYdn8EeiF3CVeenw2mM+VFdZ+nOOm53h9TspjDKt7OCLDfd5/+bcFQt7BYIen
80CPrxBDD+TPzV+XCbGmiPv5dSyNpVrwnu+FYMtzWNr4KgcMsMIfH1MnsSvW6xsbQHXLiiDp9Wow
P4s23PgnOey9fTPXqtzBIh41klmvVt/yTAu3fiDm2ac+4OdnzeX/j4kC/r+fKOgDF5PDrjc9vnyw
LpBpeyB3ItqAvnBhwE7zDOLD0gP74uy4UGbRnrgRu29oGpxmKL9bO3h53gzG4ugw8NRJKp7f55bS
nClHwJO3FyxZdB1W/WvnULmWHTJv3kQnB3wt0NrZndhe/wTTp55HqCeRRuy6zgvyZmIeAtBdkIHw
qOOjPfEQYUHCfVuLYH5xCQPFR7uiQ9u/C/K4JxDka6MQqzEfzWJ53wqMd9vCTxJl+hCcPQ0EJytE
x7w8FPTOlBbY3g/JIq8riEOEFM63JUT21xyKtRSGGqQcUYPrZKoexfdohsfFSpFT1BEYUXqO4Utz
AmKU3r4hi9muoFLOBjIr79gsj6+J4UM4WSgIxGkYJw/HEvVeE17Us9LwV5Zt4TEDEX5PvVXQ+17p
ZVe2ZuIZLAGr/UxsQBBsA0mpfQ8H/dRDWcxZony5uJiD03yXqrh2kGl4UbIwkmNAtDNUVAD2Dej+
1EhwWRYdGQH2ALnhNIX2OY6Q67AXsERDNUPtWsYBlEWRrtd+tCSlSQrivNl7QW4HZYX2V2Sx2Jq1
t66XKgTezRiweKrXZpy8LgRVe1bQYegtQF9M4oJzOvborPU+XfPnJZOF42ripeU+3gQl5wJU9f4g
RuKJw3cQPhmcXtsEBinPlOyDSwkz64nJkSsbfb4YJwYE/cQQY+el3sCU/AVe4wYFUl+blP/0z1a+
fesWGVfsFuR2L2P4dD2KvJL1vfWyXDDoapclfl4uxTIujxDYT9NCuhv1Hq2DooPdgYUBcFhMp6Ge
LzD3T0zAl33cTOca1NK0Z5ZgvLF1schLOsN1eK/BNJZtgcW9FUv8Z03wcuO+DaWnsQbgWFyDpYvO
+igWbQmv38ZH7oM9DTOS9RE+7Qyiw7H3Eiqemg6eBCwQfxVBMdfDG8LTvdkhxGejtzpLLsDP3W6J
M9WYrt6St1DeXRgsh+LeI/KpZuAFjgU5e6aYjJ2shPI+mn0U7aMU0Ns9DWGaPWVkml40LC/XgFC/
3R2iJZyW8B3Z9XCP3lawPiI8rCJaMYtyiSFGj9/DOj5gD+s5G4KyFmU6GzezBF/GPqHDoR/Aqi8J
Dy7CmBOtjY507Ymcga1jHbBDNg0zKbAG2AK9kf9inx41D0YFAg146PDtu2b43vMLALsixvzOLIcp
XyUI/C84B8zWIaQWfqywk1wYjN8Sg8kbPhgeznER8LrX65Oq8Rz81PYThbvoXuBMaO/QUEsVFZB9
6zM66pw87eFCAi27DbN/mmeYzMQlx05MwAqJ5MMaZh+ErttAcHJpGYAkSSQq5Q5FS9MrA40h3GHe
8t6UamdDAokkRcjemx99OQzfDA5v2SQHbHL6CNtLCeC7i4Pdtt5vj8yanHPnPR4G9pusD5b5wnKt
Ryx866u+vtGulgDbXtFhMRM6lbkVQ+QYB6JOnK2v58uYgi5zFOQpde3Nk9fFYPdZbxgu5TFZEq/v
QbF9Z9Z9s2mx3h8MBy4pvhOXY9dinVh4F7+5e0V6HFlgZYgoQPV6L5F96hVvESRXg4NlJ4F4NDv9
dz6AdY5fyA3qr07rF7Hgh3EfxBS8Dx1EJlRk+Y2kQJTr8e+8QduLY6KNkd9MJqhH2flYzF/9Xq2o
uEiFW8nB7uIFYKnzYwoffIXIXRFRQ8/4FkvHyLii5Bi9Aa3edgyGico4feM+WQVWkn76ghytPiXr
9/KpoZZEfrC/mvuBktNkg7PVtH/1aTFW/gJRLjDEbLxJn92TaIhFibWgxdgCVH0sFaxWhyfHi7gD
9HRwNcl+mQcs/uqdsBswWBuok6AS3WG/TUgAAbWQbHqQLNlKW1jxlYmsTz8X43EntPAW1F+k3rjv
MH8HjMFBNU9EO0cILFfJGuE4LRRZh35H59ek1DJN3gMW6loqhvKtSLK1jytk8t63mA8v8Q6Gux2S
uy4SfYFfNZOvFU6Iy9R1Q98mTgHQ2wppAAsN/tUD0SnGAI4i9PCjb2y433dsQI94N6xmbmtQed5b
pFEsUkqDqyEtyZtFflquHj0cfB9q4v2In/sopXPInQ2gsyEI5FmMvbVQLz6Ajy5FWorv+rhwsSW1
rndCqBWVZh+eXSywLGqQl7LHor3IbgmfZSqQq2G+9bXpv/Xf/hmpJ9CFk7QeEsS02/oQsAz1nEN9
iNngd79WQ1Jc+OIdE+mvyNDJVk/hy05TFCgiGqjNChe4W9YC+VZJwSwbYQqtq1mioyvum9WN4hlq
YnkkKhslzfKRfB8ah1BEASt2yXpU4xxcyzEjwV58/85fCPb7lkXp4O0Ajpaoh8+8VpGzne9l77qu
dM/qO9KNqKdDzNwg3O3mMpBUNveI+/ZGqcpqFwu0Fjy8e4Ac6o9IQc7Cls3s7QQJMqeLiLxHKSX0
ebBt6JtWi5TLuWvo+X7yoYNiJ7AWTy3G5001oPkyX0F1Pr8Tst0HKH2KG6YuPoElLfocRj2pgqFm
vWLByx2CZJyOCLH0Aqaw+Ggw7qTH33pPnHq3QTpOOtEzzA1LlB846JkGJorEEYqls+XC/II9criY
52JthLoDb+xS5J5ZHmC771pYwUzG/Wq63oh2c/g7b3gP+jbBWz0DK4AKSbb3R+6vN4ZvVv4S6+EZ
BX3iAsOv5pbBuuLr8Ht92L/Zhmhi9C3oFZdQclfwwQJrHgDGds/D9C4dg2XbP2qwiwLTTvKIrfU1
mPXXakBvMXriN+xzoJfgZksBFg2ikHMz4KP94mTpc70hRGhRYNJXvXxA8S2gEw6HRS2aQO4erIj3
U98lo8BFLjwr40hMxvt4lJYslD652wRzeH7TRXadAHa5owa77X6uO0RT+bFWASl/52/bL6DSKEIW
8Z6UZm+Vg5E/dWjzLx4tg7KCmDIdOnimWCyJV/XwUZ0dhEDm6fh0GXs4SNszVNayaWa5aDh46gQV
2aDm6bogCsFVGMNNbz26vF3jK21+jajKuUqWNj9qUB2SJOColzbrB8nBT39JYGSyvuyeJwj1d8yQ
Q2hehvnc3i0xZSQ7EESzHz46GBRArvSK+ajnvPHJpR3km/eRBJk4/ukvOFlPASecdwNLF4sxHDo7
IEbt8eDbsIwGts+Lg0780Cka+hW2mZMSJTu/dUrLPSPKx8JE+vbzs3GSFJB3jYrMM67AR1JvASQv
egmgwZqAg214h68wiwOYl1GxiMsph97L+BCvYb1m3b+tCmrPMiT2WF+a1e5xB3S19FBgiRiMDGh6
eKxBGOz4/uItpsb7wH4erEC61v0w//Y7TkkerBlX68v81X2YMxWDrI9XNwuU1Bz+9I3m0auhMuRr
uHrvPRYJK+uEliwDvBU88J72ZkPve7uHVVD75BiX9rCIuSoAz7EIUVfuoPN2j9ufv8JMJbrN2KdJ
BTXznhEX16ZHb2ebg4p4f+JnH/HNGqnXFWpqeSJ5xJ6HPSx5DP2d9cAwYQ19l2vUAs4qUiy9a2vg
/JvvQ+zBidhDLRZUfRuMHOYCRy6WGRazYS4QFuOJ/Onh2tp1Lpfj+YXchY0HfFiKAKQ2OWCeeCrg
ZvDiIRetXwxXsUjWcxQK8uaPkcFjc6DuWf+C7fWRW7KZN3FR5sPUkrZnoPRZM7JFU8NvwiY/v0H3
0d6toHkz3xhWbK3PUZrBv3yQrN69oM5BF8C3ts/E35djMxk1kwHOezVEn/FcrGc15CCcri5RLO5c
jJALK7mJnRtClmjQtbt8XZileEV+Kj4A1R+LL/86Jr/8icP+lcGSrybigpItsOHaIRhYWUPGBx/A
wrq2AEePVYOBY/tilZFkgJ8fSxV8BLOchjk8VeM2Yec5BR2DXINBZCFic+ZnoNWL5PCVOW4AX6yq
z7f25MLUn+xf/R/GykhHaL0ORbB/mBmYrzc3hUcsBkSrOCXZO2ROZRPFSwBbUS5G3Ob9330TH+yj
GQacu9L7zU4InbKZ9n1a1PBa4gw5B7MbpkY6urBu05GUGavT3bpkKWxg9gh4pc+K5VqDAPz259CZ
p2S9PPYrPB6NMrgQ81vMVZqu0KDxZg5MpVjSobrLWz1HGe8pxbR3NReW/ulL3L5+0a8vdApcAONu
9/UFyJb/5S7wNMzx+NXQ8TVVoG6zESnBuS9mUzZjGFtCi+y8Bs1aPi8arFxH/tNfku/VEGz+EWlr
5AEyMHEAH+3Z/dOrCaqpAF9plgR7qW+3PHhjICjaG1H5iBvI9ezc4bqsIhZ39bH55Wd4YZoY87xX
FVhgJUF8lpkQ7M5YoePduCkAnSyLmOdeLsjTfIcwtYSQbB2hZqsXAdSSxMf7tTeLv/vHHo4DMntv
LGbGG2YgHYtmu09HfX5PSgAlp6iJlmM5GY8voYKXe3Mmh95M6RoKUw7kR+cGQZMJgG55Taa3dUXu
p7b0Xi4GDm5+HqnKWSn2wj0MgHMzWHJ4mnyygOVkwDiXKhLEWeFRFz9cqcL1AdlbB2uVWKmDC4Ih
UVou2fxSW8OkJ37Aytl3IPNrFICfiQXSPK5pqI2ECg6dG/z847CwucLId+N8Dfa3vgfTtAouTFNi
Eedl1sUccOfLz98SbR+5YD1dxi/wVvER8KHXeX/1RXsnNq5yLqXLvNx7oL3KKKCrxyTj8+YYf/XV
H0WoL8M63+UkJSHxc/GhU+NsdNLPvwRmqQD+oCaZ7N6sHTGe2NH5+4PhgS7fDaRcOa6hyVnLAZGX
E3H5WgdjM9kc+OUHFItNMzZcGUI+WjOiSpxJl6d0LIHzMRjkJSz22jmNY+lwDgvik3KigxmcIfx2
9gVTGCne0n39FeyiucLsg97oyp+DGZhePAf7j7nTl7OEFKDK9wtRPmcjoeZDEMB4ojyWN560OMNX
E6JO+JCfX93qHfO7j3jxosKj5mOWQPv1woBdaA5mR/a/oMO2jMIPt+pL7lo1vAXVF+8P/UBpvndi
cLo/d8SXSj/p67S8AybpNLxTcestKIYY6LsDRyzkWWD3kYxAuq/1JVjjKASrL2BNCjTRQ00adcWM
07yD13ZMUamUaUN3kJ2le1BV6DR5XrLxjRXclHMdzA8uATNTsyFwXwYl3sZHyCE49xAtloLlRuQ8
WuDyC109VIkxYyuh9ttXoPy8arhWonjzC0sMjzvjhC5nE+sr1/eKlNXPHtkf09M5YzpWQH3dC3S8
lW9vjdRohbvT+sQ0id7eWj8YH/zyW2mylk5YyPhw4wnBxs+GgTPHOyjH0ytgInEq1nN0kaQtfwRC
ZGJAD2TuIaoFiJzVrPQ/P07OTI1fnhdSqqKllHfLXCD0Fit9fLQlBze/EpwOuEkG/+3l0sGLy6CO
ormhTMnkcMhdFLzM/lHQh/luhc1fkuAjOsMSFM8UwujqIz8q1+SlagwP958rIHqHYw+f1QsPxaj4
bvyl3vIkaOGKGAv5BmtSLKPVgqPlOshgsTHQhbnG8Jcv/vx7UUsCfOAqQgejH4u1vdR3GNVSTw5N
33urESWjtPEdzC/eM1lOXp/CGnsvvNO9WOfUl5RDwVkN5Hg1V0wnUAUwY5oOBUZZNdMx3h5AOMQs
lhORb8buaF8gwx4nLNXsrsBIjS0oRAVH0CWbm3XoPzGIGKFDYcTtAB4Jh6EE2ppoJBr1FbJSDJ9f
Dwd482fz2OYQni5YDrjay8D8aFMevh8sIVrI1duTiFYMwaO9k2DK9l4zB9EFPO0UIvShpdfujKiD
JglH3JbefiDjPbfA58Deg89oKpR4RNDAxjOQLZp9Qw9734CXvMlwa2N/mHdG1MrBPEHiJ2zrbXwl
g6BpC1Ju/mG6rCCG3P51I4oc3fSfvwbdmFlEBZzl8QCtF0jldQpEvT4NexcJPvzkdoOimBu9v/x/
6p6UOHMdDOB8duYfP0PKnpu92TaX9NdBDOYvtybLJzqvcHlRI9gbvZ9QABke5HA8kEAv1WJXfINM
cBYL4k3Pk5UKlQGbr5MTdePHq/uMOeg4Bx0dYK//iy/yyxoFPOrTZmaNi/L7MxbKGnjjPo1S0VkM
SPyOVQtun16zvzw3HcVzsXJ9pcDltRhYyM0JjN7RvwPbPPjBykVDMo9pLMD9Mh9QNEe7BOP9gf/5
8x8PpL96AeVDd0RHTRQo5vpeg8ieRBRo5dObzePxIm5PZAsEo2boLx8Bi8Q1/t7rd7NIkoPhftk6
iHsWgOESnFyYjSMJ+J0JB+wKOIMnS7AwE4jHYVGHJgSBBHTit6Kc4FRoZ3itxoQYZ+xSzjsadwiP
V4SFvenoxAweDOhYlgsEv74187ctYslpQosUXllSfnxwX6h5SbCtb9Wsk/BRYMelBjlIfeuN8/Ca
IfoYGolk7tXgbf2BuBSvze+/vdWQbBdKh25AaJcNFAfCC4vP1RnRdp68uZzUGQQYGEG/9TtWRy0U
yJ/mM7rINV98HE1upY0HIC8qYTJDrzWgcrq/SNCLTjE/uFKANHkNSOeiZ4EJC23w21/RN19g0mqm
/+Vt4vls0PDkjDAohVNLnMI0vB9/ggyLJoLcbC14/hyskDu/6mC9cwrdVfnxC4baPiIVcq+CDuY0
wivEEZas2kt2fHSTQGJJ+e8bHAXV9z6Gu9P8xBGOdnRsuDSGi7k4W30IhzngHhc4ibTH0r5uvW3/
0j9e0m39mbmaVBcuALpES6MwoUK5T6Eq3s9Ep5HmTeJyy+H5/nwiM8LqwMfCZEg/HqfTqPZwEV1i
aK9A3vKzPuzxbgrB6MkqMl5eNlAbn+9w/awAs5bYgpU5HO+iQLo9Uu+RkKxfImuwtrOVBJ3ogPV2
GXKI98yb2KJpN3z4vEpQPx5AsEjci87u5HeQmS48UjUu2PjOLAAnBgJm3SzenrHJ3oH+DplgcGrV
2+dMiuHNrT9YvJnNMB/Tcwt7xv4gX2O7YlrVewm380CMDLtN+fLeNSQUlhvP5RJ6O9grdF0w413m
kWJuPMKBxsjexNp42XIEzxLqcmmgw6l3N57Q9nA+wwtJT97Vm8IVVrDDrozXze9RFGzPUM0FBgul
ORVjJHv5X15YvAh4vSofhV+eJifZ6wH3uiklzDg84c3v6UO9V7b7TETM1NmlmZ9c2YGzgkeiFdzT
6/vhrcEf3/dk9l0sL9dn4MY3yY8/76yaUaB5DknAnulDX/f7oBPjTngE64ilok1uXgjFpiVEO3FP
sPEUHhbpaSVG4511vF6qGGLEYGLs8YtSL3hoPz4f7G1TpM/D8E3ha0xDYkk91tcaMS54xt6y8bMd
ne6adIfRXRqI9y5FvX/eHAsyh1ZHTlInOmYfCweYR6cgbcViM69trv36i8HnVi/JcgKVD9doZcih
7PuBnvEphokl5CgauH4gNVPcYcRNj4BNRV3feIMtT2eGx6sUfYfhslc74Oihh8xHD73RPYkWYLzW
CDiEfW9XrZIGlwIizGy8cobcpYLOPtaQukSnYQzN2YKNnfUEgWzwfn4Kvvz0hHQ/OgzEO+gdfHyr
EOljpDWr+bX/VT+8T3lpyC4IZ3jjq4Zo14gU635vtTCrxgV/HfZCaXcvFKBPJo/0IdILWr3e+S/f
Izdlz8nPLwIUTnv8udVRMdonMQdbnkSqz420O6hFBsmTnol65CYdF+w+BC2XXdARZkwyMtzFh/BU
bM/0FNXi8+PjGw/CXOtlxbLLtVq+89UV5XNtNPsfL932H1m2dygovxsV6cPYDyzTsqEkfrt38Fjr
gKhMRAsyMLkPHdmSiCbjizcL3oh/+kqsRx97Y3gSbJhmjYy8Le8vu9yt5IN5yBAS6bVp40lPYVum
Oa6l6Nss0yrYsI29JNibZu5tvJWBN+GcB4wtBgmtgkKAi0xVzPTipyD+Wc8gv387uD3jLx3bo4Lh
La7eRN34+poJbQmVJiqQpnFts7p9F//xpZ3Q7xt8UIsU/PrB+1tvA842xfSXDzEwS3lYmK+qyaLe
cgh5WTzQ+K3dYWGMJtG16FPgUmhqsP8UAIMd2zdL6QYB/PUTio2f8Wpu93DjG3i+ni2wkvMB/+9n
FPzbv//7//z9FoSuv91f22DAdF+mf/6fUYF/5rf8nxzH/5Pwf78tAY95df/Hf/xrCOEfn6HvPtP/
mvr2/h7/8R//vv+bNvjH1E/56//663/b/q///Lf/AgAA//8DAOaLvFiFYQAA
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 7b8693d43ffd48b7-LHR
- 7bd02a723868dd70-LHR
Connection:
- keep-alive
Content-Encoding:
@ -353,7 +353,7 @@ interactions:
Content-Type:
- application/json
Date:
- Sat, 15 Apr 2023 19:25:58 GMT
- Mon, 24 Apr 2023 17:46:27 GMT
Server:
- cloudflare
Transfer-Encoding:
@ -365,7 +365,7 @@ interactions:
openai-organization:
- user-iy0qn7phyookv8vra62ulvxe
openai-processing-ms:
- '264'
- '286'
openai-version:
- '2020-10-01'
strict-transport-security:
@ -373,11 +373,11 @@ interactions:
x-ratelimit-limit-requests:
- '60'
x-ratelimit-remaining-requests:
- '57'
- '58'
x-ratelimit-reset-requests:
- 2.38s
- 1.587s
x-request-id:
- 607b159345ccf7869258f064154e9a57
- 7789d01d26c1a0508cea5217b26757a5
status:
code: 200
message: OK
@ -517,7 +517,7 @@ interactions:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 7b8693db192148b7-LHR
- 7bd02a7a2ea3dd70-LHR
Connection:
- keep-alive
Content-Encoding:
@ -525,7 +525,7 @@ interactions:
Content-Type:
- application/json
Date:
- Sat, 15 Apr 2023 19:25:59 GMT
- Mon, 24 Apr 2023 17:46:29 GMT
Server:
- cloudflare
Transfer-Encoding:
@ -537,7 +537,7 @@ interactions:
openai-organization:
- user-iy0qn7phyookv8vra62ulvxe
openai-processing-ms:
- '128'
- '160'
openai-version:
- '2020-10-01'
strict-transport-security:
@ -545,11 +545,11 @@ interactions:
x-ratelimit-limit-requests:
- '60'
x-ratelimit-remaining-requests:
- '56'
- '57'
x-ratelimit-reset-requests:
- 3.292s
- 2.325s
x-request-id:
- e7a292440e79bd667f0e689db47a9ab6
- 92be107f229b82b86d22c38edb3f9c8a
status:
code: 200
message: OK
@ -577,120 +577,119 @@ interactions:
response:
body:
string: !!binary |
H4sIAAAAAAAAA1RWS9OyvLac71/x1DvlVImIJH4zBORugoKoZ8RFEVDuCST7z5/yeavOrj3JYGVV
JbW6V3f/+18/P3/atHpk059/fv68y3H68z/fWp5MyZ9/fv73Xz8/Pz///j3/q/PxSR95XjbFb/vv
Zdnkj+XPPz/i/1f+0/TPz58hZADNu3w/bMI+FpQ5O9fUWwctmIlcZRAF1kJNi4rDfEcHERRrcqDm
aO3Cubz7NtCdSiIbj+aA982IoPNEOZJ1Ylbr8HyIlFmQRqynYw/YM8YuGORMxHvT1AcWJ5cS9r5Z
0sPhUoSDtBEkIDfvNVWfIPXGVjN9xfK1F/59f3k0mQuvthAR8BiLgb2ErQYvu2zGlmKfwLJ5xS3w
I6GkLo23fArItYZzFtRYC8f9sDzl5AwnZdao0yZd2DSh7oPHxtdo3qg6IJt8lEGl7Q4Yp0+Q0u88
oGoSjIrNZU572hYy0OAjxGg23pwCErlgXMSG+pfkzXmyKAlQpYuC9QxZKfMg/SiJKroYY9fV+fqQ
2ICfc5Ui0RsqJo/bGt42jysZhOiVUmXsR7hGmxNZkWuULvljbcI4FA0kTcasjzV7RcC8Ri21CvPj
LVW+ZBD4Tw97OT1ysnokI+w6Q8eXE049FllvCJPn28QHwVnx9hZqKrhbCsGoDA7p5tU7NpTAsfqL
52LZRQTdtg7o5WhfUj7unQxEYd9Q1yqOA8vcIwLLBalEAv5el0jhiNtAbzUcPnkwMHlcPjBMIcKB
fHd03r0Z270/zY2ay2cM+ygvAvhWbhX61FEbjvr92UMxL31sLh8/nPMFFFCDWUiNOAn0ZdivYqUy
WUD10/AcxtfDjsD2uLOptzi6LoF90kI/giV+hM+zvrDTVoJ5V0/42J/gsPjNXQSCwW/UGq7CwPR4
jmCzjXfYQEQFbNxcFchWWYGqq97yRT8iEQbyfMbWXRD5+5cvMA4v5FNL9cCMlyrCsjSvZJILXo2v
a0KAvEIe9qi9qZgeaASG5rMju6i3wjm2lwJebRhhp1ksbwadDeF+SS3s2lqvM9HxZPg4lw5Ryg/z
Jv1oitA3Sg9b8y4clsDfqjAo1zE+qCeLc+m49eE+1Tkq4/ThsVBq5i25r2KqHfKe0w3uW1jJ1gVt
q/6VMlLsRTi0ao7tOlG90Vu2PtAFTInsv6OQR7Z8g277CbD5gQ9AzzR0VweS+vRQqChkSveR4K3R
VOzeU855MMwBfBlPjVQdeAH2iHICbpW/Jh//CasFXgEEAT9Nv/zwlsNTSCCh8hnVmeUC/somBaoH
bf3Fe0z7rpRkeB8/Ddr6rB066fn2obV6XsnGsZq0N07QhW9YRmj9vPp6HUl7ZdcmxwE7klXx5W6X
Pbwr2yM+O3VQfecrwE3OB+x9FF9fepMXu6NrMKofsD3w5kAhNMxzTgY/78B0pLIMNqK7wsiVAp1l
1zaDxxXWKI4ubUU6eYtAapclWuWFyZfwpkDQaK+QOkMeh3Mmdy7c5MuAdeOeVuwSHDSwHJsO8alZ
PBah9AMP48TI5bJcQ9YrZb9rWvmD5MDdgb52gQr2a3RGErPbarTzAO3uJo6IpCx9tby8vbxLDXrF
/m6wB/aoygSaoHYxzosPp5NTFFC5dC96SAMzJNxKMngasU3s5EwAm649A0l4O+PDNLVgcaMygKM/
xjjqzo63BMZdgKx71dTX1KBiND30MBJfF4xRlOu9iJdyJw4io/rUnDx+cV8ilG7YIEJUuXwWqT3D
0TouaPM4KNU81G4GL9R26fXLX1ZMTAHf/5JtPgNAvnwHK3w70mt9HDhBk1zDxzLliN42NVhi0alh
X7CMaoR99IknNwUMiotI79dmyC87VILafo1U1Y6Fx8u3IcAXhCY1WN6kJLsW2a6/TYRi89Xqc+dO
Z3AQIwfbTX3mDdlJLUyb05P6QTylbM42BrD4uUJrkFQp95Hsg40UzNTZniTAh1k/K7gDClHuUh8u
3oMxmK8EFe1GrwwHwSklANAHYm9uTCCmtziGEU4NitBuDT57Yt7API4A7z+BWol9OiQwJGWM9/mh
DDuQyS7Mjj1DYB20fLkMZQkPrKU0s4xOX3aN3cOauyXpBWvS+X7RArjFfYlEZWBgeRlZALZ1lOHj
Jkt4N69cHwrGZU+qh5SDRUtKU/nlp9FuWEX0eI5heGsSbBWm6UlH/PTBPijvaKtqKpjFZCMDZSII
OwpyquV8dQpwz+yA4luGQlZpIYRPzRF//biasSwIv/PDzkUVvemXX+Zd1egJn158zPkoQI/dEpxH
fROy6LJHYE3pitqnsvHG2N6W8Hf/TJsfQ97FHwOuyPuFWD8U6QKikwmDjSFjJ59TMOcLL8BliFbY
OnZ6xW9NJ//mBbLbrbRKeqeL/at3ZJ0k23SQLL2GvFg+2FCVouLX/J4AEBBC6u7s6MuqWivg3mcS
Pj+f8TDpQ4sAbewIf/MAXz+kQoLfewTHuzG0yEwCaA14TS7WTgLD866rYOufCOHcLLwetzCBSHYf
SIm212reTM0DrquXR87Q6MNl1Q8FfMvU+YsH25JKhW3htkhKHQdwzzzZMG+2IZKOF2dYPix5wPxu
x9TSVrHXLO1Z2y1sUhDkwpF/+R0A2XjHGG9KNvSP1IsUuvkMZH111Ipp1tAD01RO1AkeGzCHUy/C
c3O+IP7k80CygIlf1qb0chTKdDJfVAQ3VABstuqm6ptnpkJJqK8YgY0y0M1tP0JQwwD/+i/r9kEM
pPHxoeZJ8AZ2FoUY5sozpb7ZnYelDAsBZozr3/mr1RBc1gLYF8JM/Uuoemw8JgFwo+WAnXsn6fNX
3+HdqW20lawKkMh6C0Bqh5Twep+lXARODdvCblFJgg4sx847g30BZ+pZ057PfbSed6p+TbHRZpk+
dRSP8G7JBHuvdOeRxCxj6CBmUo1HZUrfatjD0ySX2J7cBsz3/FyA0Pb0v/mRSeXLhMNFGZFA3tIw
f/0Tuj3ZU9MYrYGfPqIJv36JPXPG+py8l48SSYiSJesHMI7kDHeOKwAkH9NXyl3yjkETrLdo93pF
fEabQwFZMjfUuF5LvrTT4wykmTho9atfxrbPFLBOGux5YlMx6GzHbaJKLkXhk+nMDeQSzp50pN/9
0xfbvc9wxdYG3We99/VrOYDadU6ocV6bw7QVTaSsQ0PEVhudqr/5+zBShsr0FoC5StYfiB/QppcH
vFTsUCpn8PVTUhl3MMzVa0AwjoKUKEJZDcvcWTL4zSNdm3Qpp1lg/OZRsuxrK5xh+h7h6iTEaNeP
oTeTZSfCT37Xvvmr4ON52CawXl1iJDJtBou8f5VQuh0N7MtkDb56huC2qE6EPT9ZmEzXfoYUHz7Y
rCWjmsNH7P7Vf//+8oa/+6PuYIB4pUgpFYHzATctttAMD3LKVm81gtgEKelO0l7nKr2JUBjFAz7Y
RsY5McYYfP2M4nA0Q2n12TJQdfHtiy/Vv3nEBt1mrWKVI7daVFTYO6EfI+zL4Srl0nFB8MzBi+qk
1vk69Y8FtErRp65Q6hWzN2kAy2OSU8+7Lx41DlUE1UvuU6SZbbj0sY02zwNcUdsIdG9tbkoXPh7j
jh6vYqJz85YocFPuEXXsYEyZqI4imOq1if4PAAD//0yaS8+CwJa15+dXnJwpOVEQqU3PUO4gVSpe
IPnyBQQRFJVLFVBJ//cOviednjpQ3FStvdazN984JeKgfiRALGvYUb4X/OPYZwXB5XDGIG7rijtl
m8DWbL7E6JHv/+mp0Ekmw21atQPB4wV4ia5UKsVY5z0EOxSqYUhm/dG7HIwtmvUPl99wpX9jZJ/g
MHkms2a/R739UKqZvX0RW6mcUIr7wIBZr2jR6LuU7RZVDtTfxSTLEuJPioxKdIDvnXmBtW0HY13m
gLT9lWlh7aJJCm8RLJU3o8A2qd+PCtaU0F1mJEjRnU+qYEtonJhC3N3ktFNwMZZIAlmlqlzwttuc
YUKi2AALosul+pbhB9BtqSzxQjaY3qNTbKC9dsBMq/OS06HqOqQh6U62+PP1u2+4u4B6OJV04Vlj
O77bToKT/1oz4+VX6eC+C6p2vNjQMdq4iD+qsASuUx2P/efud/HT8SB2a4f47ebAB62KNMChAnQ0
qBKOhbu/qWk3GVTpwg7x3aK6obmeGNbuLmX+cBkgS4822W4uL53um5cEyOMjnkx5E/L9WRXgBcWJ
JTuX8cHGfgHLHqo5373S8VTpNxhlfGcBqWk1rO0dReVUUKbN72Oqa7dB4mnAzL07pi6tsk6Bdz2J
ZKsLaTV438T7/R9GeNqhpjU4BiOKMLH1x5ROc55TFfuCsBJY22qqtimg9rPNqOAfrFbaSH2Ouszp
iSG5UjXWa8cCrN9eDJNolzJ8DA0I/GmHhYeI0WitGg81C3PD9Mh+tCPl2hH828bCsnLz+V/eJx6t
aQn+3ufGbi/A4mnYDNfTo+obkjzBWO+BbOC4a3vrc74pNJseJJj1lgv7/e3Xj+Z64Gosts3yjwcc
o3PFp33TS/BZRh5Vah+1vJEGBQiL7sw9qzUaeRLJinMtTaZD9Ezb2U+ATrYpHafXOOvH8wSGtc+Y
s9MjfSqkGNDc/9mGa0661ONrA4fs5pNg5g3j2nNqlLVdTpffpZn+9Bvx/ZlQ6dwknJ9DTQaJOhrb
M/uJphgOE6onC4jlDpq/2mEZg8tv2q9/h/1DJKVyr8UeT9O6Rd+H7yrwshODSprXhvR2/eQgfw+E
aIsqRbQ1EAZe8BqXqdL702F7aACE05ZtCyfiH6bcZHSTaoxRdd62P3+LYgUFxOhjijjWcQLz+6cg
h/dwLC2zg+NjHIindlJLj0vhBBWSizl/fappYzgTZLF3Ye6YP/jQdt8CxPXNJoZm8Lbfq90RnmPm
MOxJgz7ZmWAg6WtO1JCegT6ekmcCn+56Y+5gye0UVB8DwG1csgkju+pqabeD/cqSmdvKO96LmBm/
PEZVNrTtkBZiAvwRqMx07mE6HbbxB/YnK8aistghvmlOH1jvQsp0Yznp3G29HL1WOmMBvONw8o9f
gCg7yEzLQqPlwsYfFH24PpjfFQ9/qlC9//Evpmv9Lp3Yp1B+/Yi4qiKjSetOAsKkjWmlHUU0NuRY
w5p8SpLaRz8d3oG8hePhGjN8EjbheNynCmLi+sA0dJP8IXz5g6JWeUiH/aZo+zIs4K8fOOOhbydZ
3DdQ3vwEC9d6hZrbhjrgyKJH2DU6tz9/jV52ZJBrUhx0/nIUivC7s8klpzz8/HgGDU4eldcKaz+W
ap7AHaea9qcx0Fk76HtIzz6lizje+NIvn5ee/mVO0r9SrmQXDWY9oWs/jFOuL18eqNUtJHFidFX3
y+f6/TaxzVETQv7Swg+Et+jF7D2/tPwcOgok6Yiokql7n0vaGdBzvDsUss+Ysp3jPeFuNzFdcE0K
m6F6UliRzKTDFGXtEIXeFvXbo0CcsTN+fGT68Q0q3dta56Z9mlT59tGJvdg14ahXrvOfes08jqn2
OoLkVeq0C9GlpVtTwetZn8kvX4uD1HqIVWNBnCrr/QEVDwXOvRb/5b3uVJDnj1cy7K7VtJOWmQXF
EBTEC6yy4vd9JQB75Qqzkndf8VXkduDp8pVssNSGY+N0AmrGHWeu05Zo9F9FAjMvZb/7LgZffw9K
32FiFUFZcWGjTxDwLWb4ER5b7omJAIbhdeynf2OVrW+wDhWTqmauVlx5+s2fn9leuZ2KP5463xfi
JYeCDyi0GigeeYVXH+b4fXVOIhiEZcecg71v30jcTGiuJzNBf1XMci0M+qQhkhNeouG1TAakT1uE
T7fyEfJshanyUpKKOPEZfOaB84SlECmMsNPb52fVKkFovZbZ0man99bjLaFZD1ikrMq0HxZbjHbS
4U3sTgr4WLhR/ssjWIB4pfejhqiSfuM906LRCWf+kENlGhLxrbNcldGz1gCNr9ucl3pEI650QIdL
w9z3+PZn/ydB0NsHOt1Wms7jAo7w4wtbc7sMh7OtWZA8Opl5oSigQV+tNUXYft/0qd09f7UZvSPS
XuuKzPw0fZb39QSOuFmwHRcCJG/yVFq/60Ek/vvmpNND9iNw416mbRkxPgTiyUA53tdz3oj5lBiy
DGh837Bqpft0eWKnI2LbW4p//egrjLEH32+REI0PNe+NPv6Adq1Vgh/06w+d6DzXMx+bz1dQ0RMO
n2AWxptYC7HS+VSdl3BIpxGzZk/bQUtkAXrNDYhTooH/eBtSX0+D6l740Mfw/qmRORQC2/SPdfjj
kUoSZGdyO2Wh3zkEAJ2KkOPRsvRqipTPCWaeQLDc23yMDxsKV/m1oPDjV5/h6KFMyVI6rFZdxfjU
lD+ePut1xweVH3K0P5XD3/cNc/3gllcFHeVen58/k1C9E1pmmE7nz/4pR6Eg9MzuD0bYTefqCeUT
O7Ner0Ne+GyCuR+S3drdha0/5BNQphyJ22ZS2i2ZM8GPh4qz/1+dJmELljEUbJtGA/+qcR9B9FQI
Ts+PMqSN7k4o7+8KM5NkHfb6LS1Rf0rYzKMrf/K9raKEDfPJ9rYq9LFQ9A6CW6PgWuyP+scWhAGO
q64jm8VKRFMLNwPeSLuS2N6FbaevRg3MwnoTeyhV/c8Pz/yJBfvqUdHQhAJOZfzEo+zXnEnBuINP
ujaJNyTHdrgeoieIWtlhAa2Uapj5+o/nMC85aJzxdeTBWB4qvHK8ZSuKmP3NF/7u3+o5WgrgN7WJ
/5tHhOv2A26aHhnZJmXIMyvNUXuWOxbPfpsbgtgocz6gT7Mqq1GzpwKgKVfMf6SZP8VUKP78QMAG
v+pQiBvUXmuLYY7ldnwldaeY/spg3tPchMtVz25QLvw1Xt0Xhd4ll04BU1hVxFHOli8h5Qlw/n5f
WI7PN583NJaQ8L4WRNf6Lh2akzogMbSW9Gu/G791UnX6O4+6shZ9nipxDoqlPIn5rXV9mlRXgShX
jyw04rQdtCCjICUXkRlu44QSUjoBgaJiukjvKBxjEh1RnlOVENPNOT3wnYLyY+Eyn6A+nPmygH55
zTBqhob3Sv2gXz0dPRz871xvhJdjQzTzGvpjo5kyfN/Rl67j70Wf1OBWw9V8FcxUFjvOy/x++fkh
KqzJ0+dxsTyCrJYjsxZhzXmoxSdobsWaGN/lKxyvwtGAR0SfLJBRo/e7otvBkLw8Yjj9uR0ktKXg
VWaLafau0hLgksAwCDl9pDXX+9H+XlDQqAUzNf70f/MdiEZ1okORrarWvHxvaD3GC0J6UHmfxMWE
btITM2IufD7zagVmf4JHc39pf+cNzfmJ7RzngYZTre7gko8iMcxNHf7pkXhsMgyk93V+coZILQfx
hLkXPvzhrqo5+l7gOM+nsrQ9rpQdqhcLj23MNtCn8/1A1XOifOhouns+FOfvHqZFXvzxfhZ/wxMa
SZ/Qds7vw49H5iUU7Bh2j4pbd6f8y2d2e82roTg/jug64AvTrse1PhY8N9Bln+3J1nvo4TwfyNF0
k/8zT+riLCkBPqlFMIm6kOFYo5A1usG05vWpRkYNAzgOMqZvnJJ3UfqwIFVxShdtsEmnGOIBueyz
JO7uOvnT66yX6m/eQuL4oY9He7lEvj0+iROkj3B4Tt8LpFYy4m7uL3zY0z2spTwgQZnb1SNG5ALz
/JYY4JX6hPNWBvUxrfGkIdr2PqktyK45kF8ekRb71Q2+a2HEwzyvG8g1in78kmzc6YimVzp6kO/e
O7I1t6dw4LF1U+b3x7TQD0P+HC0ZfYLnnWm0oyG1uZyAn9GCGXN/HB29c2AVnE8EN/meM9tbND/+
RfQV2/pDU8YazPycNrPf+/EPeKPtlex+/DsvaAGjbhGyna6kHdjGe4Ij6guM6rvY9t1Rzf+TX6Yr
a5koPPO19PmmWBHXm1YyHo4ErX55Ms1L2+objM0JzOXFJa74erdD+YmW6qxndKjzEg1NWkXguuED
y0n/+s2/lmAOizNdakrRTmiTNHCPJ484zvrlD6udJqOl/doz61OGaBBET4E42d7ZZmVjffDKrkSn
QyFhZPcPPoVqFilweqG/89YpjuSBWph35i9pV01HVAFM15jTcubfM6+OEDPqHb7txwpx6h8EkIx4
TWb/2P7NO73TiVLFqhT0uayfA4ybRGTu7Lfn+bGBlu6xYdum1cIRLl4BiiU/mTkRU+dL4Fv4128r
4L//8c9//r/fhkH9yfLXvBjQ52P/7/9dFfh3kiX/Xi6lfzPpbxOBdkmR/+u//rOE8K9v+6m//f/v
P8/83f3rv/4p/m0b/Kv/9Mnr/3z8j/m3/vsf/wMAAP//AwAIvKZh4SAAAA==
H4sIAAAAAAAAA1R6XQ+ySrPl/fsrdvat80ZEpMt9h4CIgN0Ifk4mE0BEQOTL7oY+Of99gs/JmZkb
E5DY0lW1aq1V/R//+uuvv+u4SJPv3//89fc7779//4/p3iP6Rn//89f//Ndff/3113/8Pv+/J9Mq
Th+P/JP9Hv99mX8e6fD3P39J/33n/z70z19/b4tRxarabbpl4Cwc9eakb2bxoUZCPhQJuP6HMz3Y
LlxeWYsSVRBt2SZerI1BDsBDnnFdUd50DzSYa8BQwCzGS9FaxVIa3qX63Uc98RZa547P+/yCtMSU
CPY6A/Fe2aZwOY0527z1j9E8r+kMEXctsz1HsUubwylRXw+aEydKpHhaD8Prq4ZULpIsHlassUB8
b5wYuD6iEb8uJzST85xt5PXK6PnhWoIdeiUxlsUmHg68DcDV4jldobEoyt2r8FB04Bv2XHQmYq7k
KSgPNybZ6wPqGPrudDjNA4Ir4yDcrtttErRWoxMx20slejcwLcTq+s0cM62M8X5uczSnmxUx3rsd
4tEez9T8muzJjn2ckO9gBei52ejMQccuHOPLvQTDnlk061ZZ3F+J2kPTiCMdCQvRsKdnC861tMXi
eeUhO+tcQuEia5jeHit32GubBHRn7hLDOx8MioVTQ9HeDHLpPrErTH0LgKrVjniXuRYynR4BRff8
S8z5dhvLXr2y4VA9SqZ/onUodmf/BsvLzWfR/ntG4tDdM1Sdo5pZwjx0/Hp/OOhVUo2qlrsxZG1G
bis4KTo5vmsfiax8VbC1NUyucNkb46sP6FowcWXWvW+M+mr5PhwfZoLrw/ZT0BgTCpIZYUKCzCvG
oOgySOZlwDbmwTdGbUYi9algn3mjl3a9nNs2Gp3jlhmVpAvJ2aklJOz2IlG5OIqRiBWFd5BQYhoU
XDHT7hlKNp8b04NuhsR70Hwox2BNDnmpddxntQ7zPJnj3BSNwcMx7X/rE++BurDyDm0EoIUeLR9t
2Y1HKeMgSvygTCpF0bd7Z0ThvvLIQR6XhTj4+ghWHjKqzIklRnXcJDC/9CFx5qddN24DG2CRhDvi
FtumGPb7TgGFzLYUPc5j3K9KWYKI5y7RKynsxpt71+AaHq9E559dOOjN3YNCcBvPGErd8a04p5X1
ZBdmr/NO9OalrWG6xitmvWJ+oBsFzKX0IM5U34wHKxOJet5ReV+cQn482yfAZesTQqXEpRcWOnPW
GR4zUx+HvOqqEfpvqxHXroQQwZJ70LHnidYAuSteyiNHQV4y2jcZhAMDF9AMHTkFKdrE4yuiERzk
7oz9Y+R0wyFdz6A5yBLRyxdF9Y7ICmzbqsLztHq7dRu8PVicnzGV733jtvUHHFid0xsWn8gryur2
Utdnvu+Ju7sWYoyRPsK2Xx9IfJkfDYEWNxWOm2VHzHPpGUM1F8naHLSBmUt974qPIAoU/djSlqM2
Zvq+5kiVnBnZX1Q/HOtVncCRPA1m6nldMCmtKdrP8xyvLier4Cu5s9FWPgds0x4vYnzmewz5+d6R
3dKLwzHZni7oY7AeL4pkcKd8zqGdb0d6PmjXQtzGvFrfnOSNf/vz3d5dDVW67ONZfW+K7z728Vom
hk+lKmwL8XI2ypoOzyuxaWbHvBiDHH54YsdpKXprzBJI/SZj9mG7K+jTUhOY8IiG3GIuvxKVImrY
ISFRUaNxK482MEW6kDPe2Whki70KRX1+M7vkR4OvtG0LhfK6kH2vpKJJVsd03cnJyLbyy0fDIx04
LHRk0LEuXWNcfmwFpnhg5X1RxfAd1AQuuuew+3oTdpyrQYsk84apMBW1o+HelX7X7HrKW8Fwb5eg
mN8TZlP8x/N7X0PQRDH74Ss764qMjlX6onl7tAzxeuARRfTRM5KEWcyTtznCycsshp/fj/vbj/Uz
Gb7MOTp1KFoCMsqQ7ZDDt9iJsuoqDtpykbGds//GgjsfD10H64VHqS06IVb2DU39hO3jQo4Hqzjl
qryJFboKjm04qpeRgq3iDV4vqtJoPCYw2t3TNbHnxEJSu7xEQIS7ZeasXKOPe5Nt1DceIju20Qr5
dkIpFEV1Jc5Yv8OmXtoWrItoiVX6boxffgA6nRh7GmljjMnVbsEo1YJ+Xvhr/ImfauMXXgKMaHjU
iYeC5haTDdlHot7nkQ9K3A+0ksJHJ3gwWCpVm5a4j/MYslujOYCyXUzsl2S5i1Cam2g1kxMs4Xrj
jrPFx0ONmx7IYbmyBW9mKw9JDx4w93XDBb9KhQLpfSGIt6gkIR7Hp4PsEJfkYJ1FTK0kSOBQZzo7
kjYPe+f40AGWSUQC/vmE3Ct4hOLW1Fi4kKuYYnxPIZ7rc+I+9UMollDZELnfAq+OXdYNB3ewgL2k
FdmuHzEaNSI4iufanFhjagih0zugwt5LVMGjXiyicPDgJmkxlWVN6Zpzb/Qgdas3sexrJrjh3R2U
a2lP+yPZG4O8fEfodVFkElrvc9c3ka2jvpJOJGk3hpBTyFSIgu8Gr0quxU3vRR641zih6aVYdfWG
hz6yr+uRLvhw71o26y/Q7qoYS5v4GoputsyhPqo3ejTKRgxih2qIt0+HbPF3LIRUGzbUsdXhRZfv
uzGINibEyiHE6+XKRkOktBFkx/I89edH/FboqK9P68OARdBhg4eHb4Ye39WFOMwdURfdHEV13ZZT
6f3VBG/smKL7t/KZtckUdzzvVQWGs3PGUrjk6CtTHZBHeczuu6Bw2YSPaJnbQCzjIIw6dRMbNl5y
IS5t1Y7t1E0JlS75xLMrw+Ccc4w0CN4Mp5rnDvsQX8ATLGZ6kgYdP2WaClQJDWI5+5lRSaGcorpM
OfOoqblc7toSKafVltgfYyGmfqXCKvFNvN5YRUf7tYVRtfukVDl9kpi7dlPDYWUADircIFFvuwv6
2PbAdsN1IwQp33x9zI2EuA+UGN/LfF6DXGmUOGyAjs7y/PLrt8wruryj1sagsHyWBTHvnzoehyj3
UB4aJrNdtBI8kQcLHl3OsDo7yLFYRysPJv7zw9uOrz+mDtL9eiDk6WExLlzDUqf3o+IT9d1vf9ej
kBGeXc2XO0C9uKBZt51jJfuexLjniwSG9FQzXXMKY1Se1EJ1bu3xMke1MaoXtVdHtf0Qi8afYpzb
Tr0iy8phe8sdxIRXEZQPx2MbzRGC3/2GAxH7Lfv1P97Oax8eN7gyrAdWzDbL7UVtRaYQ4otj8Yd/
3xTR4A/3/W6Y4XMLdW7u2dPj55BLlvOnn1F2vKN46n/O7/fozOsKJE6rpYTyxSfBneo08TjKmQYW
Qzs6Pyytgs+Hcwbm1jrhBf4G3bh9HySY+C8xcf0y6GneXGA2bh94tsVDzNePVwX4srCIZ29RV788
NYBbRY50ceEUFdk+koAk+w8xgq0ZjndDxmBFYLP96eN2U7xM0ALlhWcZLF2mkH2F3H2wxyI8LpEQ
K+0GYj63Kb2aG4OfMluBeaWY5LDYJgXPOETIxyvOHGVmFQvn3VD0w+tNNxtEd5AQoOx71oh3fTsG
d2a+uf71V8/U57FoXy8HPuvwxcjNNw15z9cJLPz+wOz+YBSj66ETKEGeMptZo8tIbJyAbRr7D98Y
zr1BV+LhzdkOfXUkRbKuQxDcZkwzyqgYqRTJ8GoemGkLt++Gg+r16P3eWHixT3M0WAtb/vERlqg8
D7vIulQoXK78ib9UxbiNuwj016whu1PuoFFFhYJ+9bCtVkXH/dMxgI0qIqqo23vIj/XBQ4rJToSo
6qn4BlspQgcrFPi7shXRrD5XD6KrY7Gd2M/dFo08X5+U9FdPdihXn4MJibGe08+0Hr2dRArK3r6T
h5ITdwitLkXqd58xY73SO1Ge9ak/lldm673jjpeTd4NpPboijwf6Nuzrqx8MD+K6UWbwu31VUb4l
KiHf2u4GY721USZ/txSYL7r+IkBGRIuA/fCg84+1gpa3cYlXXsnCP3x4XG8wM2sjN77jzitRJl1S
YtpKg5g68wK4DuaLrul+6Liv9zPItweV4YIX8fD2+bie+AWF69txhakUKUTpEWGVDclPrzhQiNEm
G38VhL96AdhZClUmfBERzpL1T/+tmdx3Y2oZt5++xmtTxx1ltiUBBWoTHG5K8bXs7fjbD4yOfBPy
FzqocL7VJ/ZUPkxwqUUZrFuvINuL83Y5VsIb4FP6ZPsZpQVfxUmEbmuPss3n7KJxrzcyaq/cYwcE
W0Me9/0MmJ1KxGuyJOSfmeNAKJw/ejXuzl4YAOpOHiEUj/GoHnx//bqoMh41xzDG+Aka8gW90cUm
tjqpfD0C5OGyJc7Hlgv+2w+jVAqmlQl2v51b2GAEFxerZ4HjMX1FDirmZ515j/OrGz8nDcPyuHYx
1zrP4NLrbsGQXmra+Y3vCpNtdHj75o6Z728m6KmMSmDIW//0ZPe9b86SqgXqixiP9hwORecn8MN3
Ih9xwY9py2H3UHQWWFlp8E//kGFWgEOHukSIf+7+DBqzfjHD7Sv0w3/VPAfbKV/zrpatVQSLu5pR
+QpDwavcPIG9l55Tv70ZAkWOjezz22U//i5X/JPDtN9kI2Iz5trmVqF2V8aUh7ttN0raqkRk/yYT
X46K8fLmPZyficZucVqiEV1fI4r2FyD23dXcRb5VMHyvxZztd0FhMPel6UiXVzVGyoPG7Y/f1zdq
0uWw7opvk9QRpHxxJPaoP9x+9+owrCJSYZpdvjG/+68RfvxMU6Mk7I7vREJhMDtiubd1tFRyK0Vq
MT8Q/ZAwd0i8NILJP6Kq8ngaYzNuaxirzfCLd/fdh/gE/aUu2KQ/xDBDNwq3tr38qTfelvfsx9+J
d1yMiL3C/gLa+WgzO4+YEIvrQUGy1zbUCR8HYyjupQNWs4vZfn5S4vHu2SZ8tqNDPPlrGX0fJj4s
IFWY0yvY6IHNb+jM3Z6um6zrxKd5pxB8zmu2ey/D/9IbVYJPePnCB1eQuZQBvpMv05L7IARftgG6
LpaM2RMeCho4Ggzhdsm8AExXvML+pNIderHdFTLErzPrBCdmpczZ7zx33AbaDMDsj4SY35U7rrKz
g35+Qrv/LtBPH8H48gtyqhsXjYt0N4OPU9ym39MEv0qdinZBc2QbT5bdIRMJV6XHGNAZ3WfoW8lH
DSL95TP3qX/jcf/g1U8/T/xzGbfKk5rQ3zcOyUV2/i9/zFczk6RJeDS4BY6Kbqq0I5EbcdEFm4ii
cF96VC47Hncnfr7Bjy9nu83B6KNI+DBDIaeLIdi4i+LeO6DLqGZa673jMfhuAVp829HhqdzjMTbf
Aaw8MyQ3cutD9rg3OiTE4+zHB8dhHt6gMG4V22n3izumUKtwPTczurwsSDe8i0WNnm1s0R9fZWmh
Zr/8oYMny0ZTlSWFoBt0ulp/HrE4f1odHUprTX7x4WW7pHA/YY+OoVeFw/T8+tfvzUlf80RemdBo
JMF/6qOOVyeIW0uj2e5zQd9FzKrVKglMooeeFcrwQgG6NN8X2c7Krzt01aDCV/PuzPCQjOh8ltlo
8isZZmjmUokdMIz94kF2xiEPOX8aKtBtrjLC0DcU377pf3yK7Kb1x6efqOhilgPbD0ne8eNZu0Ab
2YK5bqS50/o+sIt5IBN/LcS6DNs//I9c90H3i+dPTzCnyj00bqz7CU5ebtFZkK3D8aPHKppn1o1o
srLrZLJOHNhp1opovpSJsR4u1Q/PsOpIO7c3BucE587r2aHgJ7c8maODJr9o4pNVyNLAwmDuEkR+
+kFM+gNFozri+MhfoSjdTEfPISqJpxIV9f3bLqHwyhVzL/dPPO7PFQUpu3S/ejF6CG8W4ndt99OP
MXs5GxWtokNFdi881X93+8MP8LjrlwUrV6hVmXQ/MuIfdmLQsZPCwekV4q2MT5z/8lF+vRu8/JTU
7R8bp4ZbIbcMy2OFhv5Tz+A4kgOdJ6EW/vGX8f3wnd5X+vE7C5qrt2LWp5yhQTMUUH/43Lwvjitt
3NZCqbopiaM85m45oj0F01W1P/1NmfzS1da5LYjh3/bxMG/jBHh2pvTNXSaE+JxMdKF2xfCluBfD
81lLwJxljOWy82M5fko6ynf+DcvYU+NmFzUOxFDfiOW074L98uf21dfEXOqNO6weEl9p+NgyLzt6
Rb/fGRmsRVmTXVYXIf/0Z+mP35ZP/tv0PjMo861HyORn/vw25IIW0HiuZgUv8S1CDS9nbMuHVSFi
ye5Vub6fSZTsSdeb2cFE7BsLLGnEEHytKCc45/qd7DbZLhQ7dVMBMeUN5StsowHUV4ve9HCncnXr
wqlfVyg7Vmc21ZPBreuRInS6MCyNd8PgsOlGiFxWUP7IDIPb/neG4oXcT3qzd/nzoaU/P5s59ksP
2boMaziG6p4Z98/K4MuSjLARazrxlSCsV+VMhgk/CV50i46WX0WG9fbzpeN2nhRSvJ/pEOo8+4P/
LckPN2CbzsaR2r0KOvnL6MzmKnOPZCXYo3BTdFtj+tNv7lD4G6o+hXAJaYenGHtRcJj8RdyyISmm
9SVQVWiJGTgLJCIAEwJfu5JLNTu7DC18BV4f60O2NV2HIi3GHCZ+y4xl8Qr7aN4n0C5WT4w6+y3o
xjqeYDO8d+TXz8TnUpdA5xbDy/ugFkOeP3O0fun+T28bbAhrB6Z8xTN2lmJ5mc51SMHU/9SfFO2t
GTy36e6HVzF9dl0NBXOPzD1Z+c+fz9F3f+vZvdBsxJfR+6JO+UprPObFQC56CeH5orCDhR4ud2Oa
weQHE40u3JDWQ1qhWVRt2WFlK2isPltTFdXHZO7EZ6XHiWRQrpdLzD3/YVBFBRl28bL841ct3+bW
g7V3v2P0QInLf/V3adiLOPtd7w7K49Cjhlcz+omUDjWWfRgha2f3if8t4iFZ3VPQb1VJtvtUF+PF
aWZQPx4BS1QSoSFovxV8wVlM/qEdSixNZPQUg0tVyNA0H7lF6BFfZgT7NPvz/5BCYMu89vMtJn9Z
RfJWWjPXb7gr4t2hRhP+Er1xJNRcNTqiqT7JQXoGiKvvtwLPlycoOgcXg59wUkGMmwf7zXPGMSQR
sG7jUdE4pcvnXnkBspoNzDpoleDFoTlBfK4R2SyGd8H3eeDDhLdsk8xb8Z3mcxCmL5cYpXbpBscJ
Zn/8pfYht12qz+QUFqp1pPn2PoreHFYRcvnwYvvsW7ryorpLsG9X/TQvkMImb5sbcrX7nPzmRcxW
eYv28omwnSE8Q0jGcQYT/8dStTrF9HOyMZr0ODOS9IVGiR082LKzREgGVSgccZbgWetPPGxV1xj8
UbutJ3zFwjAyNEzxQ+uX5jPnY1+67senh93VZdhCXjg47xdddwZtqHyo/IL7p7sP1jfP2H7KTzrv
hYT8+TGg/VlhxlA7Bx3uj9uT+bHzEj/+DbtlsCNkf3ka/LkZKILUOrMdzVaGuGUz/6cPf3zC+MPX
m5l3YW71mcVU65wcMpltiem6tKC57VdgqsRkGM/qYmBgAKzPQ8q8SY+zyY+FJ24jCpa/QTx83iW0
UW6C/PyAscNGvh7i2YY4lvsyRustKYjoQ0Gs9/gqpnhfYJcvdfz5lNgdUI19WPj0MOlDU+RexgLA
X7kgm4rlhuj8TvnNW/BcPtKOmfp2Bk5gIbJ9e3a3IM0ugcmvwpKe28XQJPXtx18nPzFA42w9WKDN
Oo/YaDyFI2qrWo2PB5nt15uw4I/TLkNrTXoyL8y/op/6xZ/9dzhyYiE+iQm3+fv8m2cVkx/XImEP
KnGKaoP+8C/v6Bq0ziOCRJffMKjDeCWu6jSh2B1wBrP1BZODcyMdL8Yog/XgbYgz+XF0z9cpHFGc
4ddmSRELWHVZTfXzZ569GG+KCpM//Ud/dMdYvf36A9Hv+afjm0qR1lP/pT//hJ+a4gTz+Pn6zaOM
0e8vCmRVcaISjFknhodTgXK/OET35Hc83Kmv/OHnRnw6uTytWhXsvfxku1lzEEJfQoTWjjZitahe
QujJt1bPbK0SI/WfxlccLxZc/PODbV/7PuRuYJqw3rUupT7N3OGcNz6aVZcBPxZV6f6pr998WU/d
bzfljww+KB1dTfPq7rGTeliElvTzh4rhnpQl+vGrjT7TDO6vnOSnN5ibjaYYOAgd/v6dCvjPf/31
1//6nTCo6kf6ng4GfNPh++//Pirw7+gR/VuS5H8z+c9JBNpHWfr3P/91COHvpqur5vu/v3WZfvq/
//lr8ee0wd/f+hu9/5/b/5rW+s9//R8AAAD//wMACEOkc+EgAAA=
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 7b8693dd4bad48b7-LHR
- 7bd02a7cab52dd70-LHR
Connection:
- keep-alive
Content-Encoding:
@ -698,7 +697,7 @@ interactions:
Content-Type:
- application/json
Date:
- Sat, 15 Apr 2023 19:25:59 GMT
- Mon, 24 Apr 2023 17:46:29 GMT
Server:
- cloudflare
Transfer-Encoding:
@ -710,7 +709,7 @@ interactions:
openai-organization:
- user-iy0qn7phyookv8vra62ulvxe
openai-processing-ms:
- '21'
- '221'
openai-version:
- '2020-10-01'
strict-transport-security:
@ -718,11 +717,11 @@ interactions:
x-ratelimit-limit-requests:
- '60'
x-ratelimit-remaining-requests:
- '56'
- '57'
x-ratelimit-reset-requests:
- 3.714s
- 2.92s
x-request-id:
- a95cc78f0e0fc53eb245fdbe9d71936b
- eee2fed77cd860a77c31a0b325ca3987
status:
code: 200
message: OK

View File

@ -0,0 +1,557 @@
interactions:
- request:
body: '{"input": [[8134], [2308], [43673]], "encoding_format": "base64"}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '65'
Content-Type:
- application/json
User-Agent:
- User-Agent-DUMMY
X-OpenAI-Client-User-Agent:
- X-OpenAI-Client-User-Agent-DUMMY
authorization:
- authorization-DUMMY
method: POST
uri: https://api.openai.com/v1/engines/text-embedding-ada-002/embeddings
response:
body:
string: !!binary |
H4sIAAAAAAAAA1SZS9OCvLfl5+dTvPVO7SoRgWz/MwREbiYIXnsEqAiI3EwCOV++S59T3dUTq1CK
SJK99m+t/Pd//fPPv01a3rPPv//5599XMXz+/V/f727JJ/n3P//87//6559//vnv3+f/d+e9Tu+3
W/HOf7f/fizet/v473/+kf7vN//vpv/88++mnDSsaf26X0bewtMu3v3FbD42SMi7MgM/fHNmRJuF
z2t7UaEakg1bp4uVOcoRBCgwzyrlbX9Do7UCDCXMUrwUnV0upfFVaR83GUiw0Ht/elznJ6RnlkRw
0JuID8rmDqfDVLD1y3ib7eN8nyHir2TmcpT6tN0dMu15owXxkkxKv+NheH60mMpllqejylobxOfC
iYmbPZrw83RAM7ko2FpeqebAd+cKnDioiLks1+m4410Evp7OqYqmsqy2zzJAyY6v2WPRW4j5UqCg
Il5bxDVG1DP02RpwmEcE1+ZO+H2/XWdopSUHYnWnWgx+ZNmINc2Leda9NqfrsSvQnK5VYr62W8QT
F8+04py5ZMveXsy3oAJ6rNcG89C+j6f0dK3AdGY2zXs1T4cz0QZoW7GnE2ExGl16tOHYSBssHmce
s6PBJRQv8pYZ3b72R1dfZ2B4c5+YwXFnUiy8BsruYpJT/059YRkbAFSrWxKc5nrMDLoHlFyLD7Hm
m00qB43qwK6+Vcx4J6tYbI/hBZanS8gS93NEYtdfc1Qfk4bZwtr1/Hy9eehZUZ1qtr82ZX1GLioc
FIPsX02IRF49a9g4OiZnOLnm9BwiuhJMnJl9HVqzOdthCPubleFmt3mXNMWEgmQlmJAoD8opKvsc
snkVsbW1C81Jn5FEeyg4ZMEU3PtBLhwHTd5+w8xaMoTkbbUKMnZ5kqRa7MVEhErhFWWUWCYFX8z0
a46y9fvCjKifIfEa9RCqKVqRXVHpPQ9ZY8C8yOa4sERr8ni6D7/xSXBDfVwHuy4B0OOAVreu6qe9
lHMQFb5RJlWiHDrXm1Ds1gHZydOyFLvQmMAuYkaVObHFpE3rDOanISbe/LDtp03kACyyeEv8ctOW
o+v2CihktqHodpzSQa1kCRJe+MSopbifLv5Vh3O8PxODv7fxaLTXAErBHTxj6O5PL8U7qPaDnZiz
KnoxWKeuge81Vpn9TPmOrhWwltKNeN/6ZjxSLSSaeU9ltzzEfH90DoCrLiSESplPTyz25qw3A2bd
Qxzzuq8nGD6dTnynFkJESx5Azx4H2gAUvngqtwJFRcXo0OYQjwx8QDO05xSkZJ1Oz4QmsJP7Iw73
idePu/tqBu1OlohRPSlqtkRWYNPVNZ7f65ffdNErgMXxkVL5OrR+17zBA/V4v2DxToKyqi9PbXXk
7kD87bkUU4qMCTbDakfS03xvCrS4aLBfL3tiHavAHOu5yFbWqI/MWhquL96CKFAOU0c7jrqUGW7D
kSZ5M+KetDCeGrXJYE8eJrOMoimZdG8ocudFgdXTwS65KvcO2sjHiK27/UlMj8LFUByvPdkugzSe
ss3hhN4mG/CizEb/u58L6OabiR53+rkUl6moVxcve+Hf/Hw2V19HtSGHeNZc2/LjpiFeycQMqVTH
XSme3lpZ0fFxJg7NnZSXU1TAT0+c9F6JwZ7yDO5hmzNnt9mW9GFrGXz1iMbcZj4/E40iajoxIUnZ
oGkjTw4wRTqRI946aGILV4OyOb6YU/G9yVV900GpPE/EHZS7aDN1f1/1cjaxjfwM0Xi7jxwWBjLp
1FS+OS3fjgLf9cDK66SJ8TNqGZyMwGPX1TruOdeiDknWBVNhKVpPY9eXftfsfCg6wfDgVKBYnwNm
3/Wfji+3gahNUvbTV3Y0FBnt6/uTFt3eNsXzhieU0NvASBbnKc9e1gSHILcZfnze/m8+Vo9s/DBv
7zWx6AjIKEeOR3afciuquq856MtFzrae+0kF994BOo/2E09SV/ZCqM4FffsJc9NSTke7PBSavE4V
qkb7Lp6000TB0fAarxZ1ZbYBExhtr/cVcebERlK3PCVAhL9h1qxaobd/kR00tAEiW7bWS/lyQHco
y/pMvKl5xW2zdGxYlckSa/TVmr/9AehwYOxh3ltzys5OB2allfT9xB/zb/00Bz/xEmBC463JAhS1
l5SsiZuIxi2SEJR0GGktxbde8Gi0Naq1HfFvxylml1b3AOXblDhPyfYXsTS3kDqTMyzhZu1Ps8U7
QK1/35HdUnUEb2dqgKQbj5j/vOCSn6VSgft1IUiwqCUhbvuHh5wYV2RnH0VK7SzKYNfkBtuTrogH
b38zAJZZQiL+fsc8KHmC0s7SWbyQ65RifL1DOjfmxH8Yu1gsoXYg8T8lVvd93o87f7SBPSWVbFa3
FE06ERylc31O7OluCmHQK6DScSWq4MkoF0k8BnCR9JTKsq707XEwB5B69UVs55wLbgZXDxX6faDD
nrjmKC9fCXqeFJnE9uvYD23iGGiopQPJurUp5DvkGiTRZ43ViutpOwRJAP45zej9VKp9s+ZxiJzz
aqILPl77js2GE3TbOsXSOj3Hop8tC2j22oXuzaoVo9iiBtLNwyMb/JlKITWmA01q93jRF24/Rcna
glTZxXi1VB00JkqXQL6vjt/+fEtfCp2M1WG1G7GIemzyePfJ0e2jnojH/An1ycVTNN/vOJVeH13w
1kkpun7qkNnrXPGno6spMB69I5biJUcfmRqAAspTdt1Gpc+++oiWhQPENnfCbO5+5sA6yE7Ep53W
s622rqA2pJAETm2anHOOkQ7Ri+G7HvijG+MTBIKlzMjuUc8Pua4BVWKT2J47M2splu+oqe6cBdTS
fS73XYWUg7ohzttciG+/0kDNQguv1nbZ02FlY1Rv33eqHN5Zyn2nbWCnmoCjGrdINJv+hN6OM7Lt
eF4LQaoXX+0LMyP+DWXm5zSfNyDXOiUeG6Gns6I4/fotC8q+6Km9NiksH1VJrOu7SacxKQJUxKbF
HB+pgmfyaMOtLxjWZjs5FatEDeDLPz+97fnqbRkgXc87Qh4BFtPCN23t+35UvJOh/83vahIywrOz
9fRHaBYnNOs3c6zkn4OYXL7IYLwfGmboXmlOyoPaqClsFy8L1JiTdtIGbdK6N7Fp+i6nueM1KlnW
HnNtfxRfvUqgunkBW+ueEPwathyIcDfs1/94N29CuF3gzLAR2SlbLzcnrRO5Qkgo9uUff18U0eI3
D8N+nOFjB01huewR8GPMJdv762eU7a8o/fY/7/c8Ogv6EomDupRQsXhnuNe8Np0mOdfBZmhL57ul
XfL5eMzB2tgHvMCfqJ82r50EX/4lFm6eJj3M2xPMps0NzzZ4TPnq9qwBnxY2CZwN6ptnoEVwqcme
Lk6cojJ3EwlI5r6JGW2seLqaMgY7AYe5h7fff9fLAj1SnniWw9JnCnFr5LuRi0W8XyIhVP0CYj53
KD1ba5MfckeBea1YZLfYZCXPOSQoxCpnnjKzy4X3ain66fW6n42i30kIUP456iQ4vzyTe7PQWv36
a2AZ81R0z6cH71X8ZOQSWqbs8lUGi3DYMWfYmeXkB+gASlTcmcPsyWckNQ/A1q3zxxvjcTCpKm7B
nG3Rx0BSIhsGRNFlxnSzSsqJSokMz/aGmb7wh37cacGAXq+1jRfuvUCjvXDkH4+wTONF3Cf2qUbx
Ug2//FKX0ybtEzCes5ZsD4WHJg2VCvrVw6ZWy56Hh30Ea00kVNE215jvm12AFIsdCNG0Q/mJNlKC
dnYs8Ed1FNGq73MAydmz2Va4c79DEy9WB+X+qycnluv3zoLMXM3p+zsevRzEHRTXuZKbUhB/jO3+
jrSPmzNzpRq9qI7Gtz9WZ+YYg+dPp0Nwge94VCW3G/q07BNqbww34vtJbvKrc9ZQsSEaIZ/G6Udz
tXFQLn82FFgo+uEkQEZET4D99KAP942ClpdpidWgYvEfD0+rNWZWYxbmZ9oGFcql051YjtIips2C
CM6j9aQr6o49D41hBsVmpzFc8jIdXyGfVl++oHB+eb6wlPIOyX2PsMbG7OdXPCjF5JB1qEbxr14A
trZCla++iATn2ern/1ZMHvrpbpuXn7/GK8vAPWWOLQEF6hAcryvxsZ3N9JsPjPZ8HfMn2mlwvDQH
9lDeTHCpQzmsuqAkm5P38jlW4gvgw/3B3BmlJVfTLEGXVUDZ+n300eQarYy6Mw/YDsHGlCd3mAFz
7hIJ2jyL+XvmeRAL78+vpv0xiCNA/SEghOIpnbRdGK6eJ03Gk+6Z5pQ+QEehoBe6WKd2L1XPW4QC
XHXEeztyyX/zYVZKyfQqw/6n90sHzOjkY+0ocDrdn4mHyvnRYMHt+Oyn90HHsNyvfMz1PjC59Lza
MN5PDe3DNvSFxdYGvEJry6zXJxf0UCUVMBSsfn6y/1zXR0nTI+1JzFt3jMeyDzP46TuR97jk+3vH
YXtTDBbZeWXy93CTYVaCR8emQoi/r+EMWqt5MtMfavTTf806Rpvvfi36RrbVBBZXLafyGcaS14V1
AMeVHt9+ezEFSjwHOceXz378Ltf8XcB3vslapFbK9fWlRt22SimPt5t+knS1QsR9kS8vJ+V0evEB
jo9MZ5f0XqEJnZ8TStwTEOfq6/6i2CgYPudyztxtVJrMf+oGMmS1wUi50bT78X1zoRZdjqu+/LRZ
k8CdL/bEmYybP2yfPQY1ITWm+emT8mv4nODHZ7qWZHG/f2USiqPZHsuDY6ClUth3pJXzHTF2GfPH
LLgn8M2PqKbcHubUTpsGpno9/ta7/7gxPsBwakr29R9inKELhUvXnf7qjXfVNf/xOwn2iwmxZzyc
QD/uHeYUCRNicd4pSA66lnrxbWeO5bXywG63KXPnByWdroFjwXszeSSQP7Y5DHEWwgLuCvMGBZsD
sPkFHbk/0FWb9714t687RO/jim1fy/h//Ead4QNePvHOF2Qu5YCv5MP07DoKwZddhM6LJWPOVw8F
jTwdxnizZEEEli+e8XDQ6BY92fYMOeLnmX2AA7PvzHO3gT9tIn0GYA17QqyP6k9qfvTQL0/o3M8C
/fwRTM+wJIem9dG0uG9n8PbKy/d5uuBnqdfQNmr3bB3Isj/mIuOadJsiOqNujj61vNchMZ4h8x/G
J53cG69//vnLn8u0Ux7UguG69kgh8uP/5GOhllvknsV7k9vgaeiiSVuS+AkXfbROKIrdKqBy1fO0
P/DjBX68nG/XO3NIEhHCDMWcLsZo7S/K6+CBIaOG6V3wSqfoswHo8GVLx4dyTafUekWgBlZMLuQy
xOx2bQ3ISMDZjwencR5foDQvNdvq15M/3aHR4HxsZ3R5WpB+fJWLBj261KY/XmX3Ust/+4eOgSyb
bV1VFKJ+NKi6et9ScXx3BtpV9or81odX3ZLC9YADOsVBHY/f+1e/fm99/TXPZNWCVicZ/quPJlUP
kHa2TvPt+4Q+i5TVqppFFjHiwI5leKIIndrPk2xm1ccf+3rU4KMHV2YGSEZ0Pssd9M0rGWZo5lOJ
7TBMw+JGtuauiDl/mBrQTaExwtAnFp+hHX48Rbbf8adHmGnoZFUjc8es6Pn+qJ+gSxzBfD/R/e/4
IbCTtSNffi3Fqoq7P/4jZzfqf+v58xPMq4sATWv7eoBDUNh0FuWreHobqYbmuX0huqxse5msMg+2
uq0SPZRyMTXjqf7pGdY8aesP5ugd4NgHA9uV/OBXB2vy0Dcv+vJkHbN7ZGOwthkiP/8gvv4DJZM2
4XTPn7Go/NxAjzGpSKARDQ3Dy6mgDCqV+afrO53cY01Byk/9r17MAeKLjfhV3/78Y8qe3lpDarKr
yfaJv/XfX/74AE/bYVmySkWdxqTrnpFwtxWjgb077LxBIYFqvtPitx/l56vFy3dF/eG29hq4lHLH
sDzVaBzezQz2E9nReRbr8V++jK+7z/d9pR/f2dCeA5XZ72qGRt1UQPvpc/s6eb609jsb3bV1RTzl
NverCbkULF/T//qb8s1L1Y13WRAzvLjpOO/SDHh+pPTFfSaEeB8sdKJOzfCpvJbj49FIwLxliuWq
D1M5fUgGKrbhBcs40NJ2m7QepNBciO11r5L99s/lY6yItTRaf1RvEld1vO9YkO+DcnC3Zg4rUTVk
mzdlzN/DUfrL24pv/vZ9nxlUxSYg5Jtn/vI25IMe0XSu5SWv8CVBLa9mbMNHtRSp5Aya3FyPJMlc
0g9WvrMQ+6QCSzoxBV8pygGOhXEl23W+jcVWW9dALHlNuYodNIL27NCL7q5Uri99/O3XNcr39ZF9
68nk9nlPETqcGJamq2lyWPcTJD4rKb/lpsmd8DND6UIevn5z8Pnjpt9/eTbznKcRs1UVN7CPNZeZ
17dq8mVFJliLFf3yShQ3ajWT4aufBC/6RU+rjyLDavP+0Gkzz0opdWcGxAbP//S/I8XuAmzdOzjR
+mdJv/kyOrK5xvw9UQW7lf4dXVaY/vybP5bhmmoPIXxCuvEhpkGUHL75Iu7YmJXf8SXQNOiIFXkL
JBIAC6JQP5NTPTv6DC1CBZ5v+002DV3F4l5OBXz5lpnL8hkPyXzIoFuoD4x65yXo2t4fYD2+tuTX
z8T71FRA5zbDy+uolWNRPAq0ehrhz2+bbIwbD777Fc/YUUrl5X1uwB0s46/+pMS1Z/DY3Lc/vUrp
o+8bKJm/Z/7BLn75fIE+7mVg11J3EF8mr5P23a+0wVNRjuRkVBAfTwrb2ejmcz+lOXzzYKLThR/T
ZrzXaJbUG7ZTHQVN9XtjaaJ+W8z/8qx0O5AcqtVyiXkQ3kyqaCDDNl1Wf3nV8mVtAlgF1ytGN5T5
/Fd/p5Y9ieduB39UbrsBtbye0Xei9Ki1nd0EeTe7fvlvkY6Zer2DcakrsnHvhphOXjuD5naLWKaR
BI1R96nhA97imx86scTumYweYvSpBjn6no9cEnRLTzOCQ5r//T+kENiwoHt/ym++rCF5I62YH7bc
F+l216Cv/hKj9STUnnU6oW99kp30iBDXXi8FHs9AUHSMTiY/4KyGFLc39jvPmaaYJMD6dUBF61U+
nwfVCYg6G5m902vBy117gPTYILJejK+Su0UUwldv2Tqbd+LzPZ+D+P70iVnpp370vGj2ly91N7nr
78ZMvsNCs/e02FwnMVijmiCfj0/m5p/Klxf1VQK3U4fveYEUt0XXXpCvX+fkd17EHI13yJUPhG1N
EZhCMvcz+PI/lmr1kNL3wcHo68eZmd2faJLYLoANO0qE5FDHwhNHCR6N8cDjRvPNMZz0y+qrr1iY
Zo7G7/qh1VMPmfd2Tn3/4+lxe/YZtlEQj97rSVe9SVsq7+qw5OHhGoL9KXLmfvcnnQ9CQuF8H9Hh
qDBzbLydAdfb5cHC1HuKH3/DdhltCXFPD5M/1iNFcLePbEtz1RSXfBb+/OGPJ8w/Xm9nwYn59XuW
Ur33CshltiGW79OSFk5Yg6URi2E8a8qRgQmwOo53Fnz9OPvmsfDAXULBDteIx4+rhNbKRZBfHjD1
2CxWYzpbE8/2n+ZkvyQFEWMsif2anuV3vU+wLZYGfr8r7I+owSEsQrr7+kNLFEHOIsAfuSTrmhWm
6MNe+Z234Lm8pz2zjM0MvMhGZPMKnH5B2m0G37wKS0bhlGObNZcfv37zxAhNs9Vogz7rA+Kg6RBP
qKsbLd3vZOau1nHJb4dtjlb6/wEAAP//nFrL0rKwsn2XPWVXiQgkDLkq93ATcSaKIIpck0Cqzruf
8vunZ3TmQCVNd6/VazX/JH76Wtj8w4t/8XcpcEvGvncTFrvP+c/Pan963AiYvcrIbTsN/ONffuwZ
uH/dEGDTqwihvG4X5MnukLJTENaQU/IQBW6BJtputxoqq68h96fHYYcqFYxBWYeNdsCAJKTLpV/9
/POz91shyvCnT/+bP6a4lIs/fED69fWdqNaJvPLDX/ynn9BsaDO4K5/Nnx9lbNGci7Du2gzzcKsn
tj7cDorX3EW6L3zK9Yoj8R8/N8os82jVjTK0HeFJTtwQMKYf4A0orrqFcts1jOn3pZfPRJGRUUVP
Y2FxfoR5dH4Qq3HmlHqJaULlNHoYR7j21vNriADX5Wv42Hdv7199/fnLeuUt0y9/BBhBccLSz6+e
Hid+hvv0yP/pQ+16vb/f4I9faTqnGjSS3PvfvEG8ejPZSiHT4X/+tgL+57//j42C/f+9UXCz6BeD
k/7yVnNMb6C4ZRFJiuEJ3uk9iIBA3A9BUD2VAteLOjDi2CRIxuW0vFTtrkiK/0D+iEuPlo6AobPj
XLxb9X261knfw5M079BJ1mSwXhabg5nwTkLXOnPGsm73HqLlaBA9VKRyvH6KNwCfl0XCNUqmlakg
l5NxUpG3qghQl4+OihAeE2L42hesBtw66OnmGm7Cx5jY6Sb38IY/dyyVlyhdpi/XAUELdOI8yhOb
AxRj4FbPI3IqYSjX3PdsgKkYkWxKPwC7uzpSpIt2J+EhGwBdVCcDpbirQy6dn+28JT8HPnY3FHYg
T1msEwHQrq+JJUb9z/GiPJDhOv8cWIlhae/msLG9PQnobHpLx+UZfMSpjZcJ7NLFeyWRcmk+Ysiy
ZG6nScl8eCayTrQ6UL2+y5YblBohxjx2BoOwfWnCJoEjKeM6SwdazhEc9S1ERnwf0v5c2RA2/UjR
icxV21tNn0C5JFekRY9XSpehEAGU1xvyd9KtZMDUb5LCv4/EmSSJrYXUitDSeIcUlwcH8Ocj8XCQ
a0r0T3srKWmzHtogCYgNDhlb1UZSoboFBtKsZ1SyaGhk6FPzieLJl4xtt6tvShOVaajo5NHSSBB8
2Hr7gRgHZ/NmcdhcaF1qhBzBqo1lNNsI7vZzi+kNXQw6c8EbWBkUiVUXZYvtVRvBun5heJDENxtX
xbjDjNcB8sEJt2RS7iF4n8czQuTLJiqen5FctukN85dSKun8NO4QKvmKHMW8ljTnpRwO1+qB6R2+
07U6PmsQT5ODTr6xlKvidDm0L31LHNOWwHbx5xpWg8UTrc4Fb07AqYDMPkT/8p2hM9JhZWsNhvOW
TNR8vjtw9qMCFWnWA4qvJx/GtvFE1uNVpOQvf7Kix0SPitKj7vm7gUF+UeTf/Hii38GOYNE6x1Dg
xIVR5DzucHyXEobJW5+I/VFNeJzZm/z+b0mcpBYVHn9rZOHl0JLK8jf5cJZ3IVd0t3J7xxUEQmgm
5GiIAmMtfkPIuYmPnEm6gtkd9XH3jpov0nn1U9LCKFR4N88Lcl67XUqOrXkDpzI0QnE6TyUdTUcE
L6by5Hi6ELaU1QbhO7gdQjrvC29VL1MHdszxkaof3HLtL24FFJj1KKTVEVAm+Heo1+GKTs7uzNg5
1W0wf19n/E6GYJrUAudw6V4+Uf2WAgw7Poe5HB0ROpYro2V17cBY2TeUwvk1kaD0EtifLyJCEkRs
W/jGVIRXfMaCyAvTzKadCrknlxATGMZEj2LRg0+tX5HniJ+SHAnJgfBKz8S/tiVj5aMPYVB9bzgC
Lm/QMZoF0OXbRlxOZikbjOilBO+4IaEwZcYUTbtCEk1ZQOZ+Fb1+WK4VJEwViPYCfDlP30cI00Y+
E1OXCOsdxxdkds28cFq3sqVxgEfIR4OCe764GywXHve/+yO9j74TLWtyBIGBwpDDN1TOVlMn0JmB
SNTe8Mvp0UgFhPTREPcZa0D4PvdvOKrhAZliZaU08mIb1nntolTuPQOfIoOHX0GA4QvGo0Eri7Pl
iQvfyL48KrbSck6gr7QnvK+R1VJ1kd/g6JE43F0ZN/VNNfowDtyAuNa5MthcJabyLphJzFbXvK17
1EeIu1MZYo7pYJJ2qw1VYqakuF+kllwuZQZWYR7RL34eE+67HvhHiom1IzVb1y0bYRc2GTKuZpHi
N3IqcKtUE+mHCynpO8p8uai/BGPbjMAGpLSG5UUKiJkJpUFfvqcCGYYZ0hbpWOLzcLXhVWmcEN44
paT3vcPBQyu0yO0Vu1ytCx/CCQzBL34NWzQU8/Lv/CQM48pYcNPXsnS3XXSqPzlby+ksAnGvOAgV
heKttHwnEJy6hpyaw6tkx4LjwKNTQmTOh0dLX7taV9w8GJDW3YKUSq6og4vafkLWnB/elgGaQ7eb
3+SyfmtjfalO9a/fe8q1LXuHO+TAtfoYqe32TXHc+gkowesQ1mYyG/jlihF8T3mJ9M6n3rpxuw5U
7RUj/ZnPbF3hy5TrvXZE6idwvNU42SZsM+uEqXLQUjaxcAPcowDIAt/Nmy+FiSGXWjqy9+N36sTM
f4FP1vuonMO3wQrxakN922zkFbulnA/wmsF6DiOC4teVrS9Vq5QL4vwf/ujpfhDtCJ5gkpOTPxve
NqdtAotav4Q7qJ7SAzEGF9aRYCJkPoeULTXpAIy5T/gdY8WYXT4yIUpShNBV2wA9Ie0oL7uzRsJV
slO+klIbOOENEjX52t5C5O4mMaLGxODfjG1zOiXgFcOGnH7fw4bDQUgzy0GaDAW2/PGJyK6iUFTA
nK6BtYygeRwAspRpmNbsJEF4Ny8LQZpKy1XfPjbsb/eO/N4H3Q+PADLPEzJpoLb0LU1U+vVHFHzw
ZqztMvrwxzfQVbBUgwVhncG4r2/IsW6fEmd2moE4ihQsiaAtf8+HMIzsASv7CrHulkg3+XRwehTc
+UO74QusQLAbFqQfZ36i3x0dwdjtIszR6sjI7BxC+RQkT1x/gsGj9FNkcGnhPqRDvjOWRXj4IgC+
Ry5MbyZ8TnoqHVRfChev1r2tb9YIWmPPIY9/9mB4l4aqJJc6RurYu+3qv78brO2uI64whNP8mKkv
N1QOiaqE07TBVdugiHyCDPsVgq179EdwTDlCHOtmlYc5M0e491sThRzT2Zx7wwZ7UXkRrUw/5fCO
lA6s/XoknkbzlgxGUUPvlofIwu9mYt9xvsH5W5+Ju/4cAWnfzsofHlipEIOtOT9ruKOfPTlpODZ6
OQhe8FbeF/Lr9+n2Kd+FHHU7P5zBCU//+E29ihfiTLRl21juVfAWcB9+V5p7W5cmvTLfbZtcrbYs
17OL7kCBeY8/Jae2wqKZJmyoGBJ1yJ9ez/GRr0jHykShvRynA7xtFLqlRJDOBclEZ7s0YeIvd+T9
6om+DSkBSSx4WNyPp3avb4sNO/L94vMCPLZl33MFld3jQrwm2gyGczuDGn8eUKBqTrr2/l6Frtq0
CCllz1Y+qCK4GwHGzb45p/g7ejoEluEiG9Yu+OGbD475byOr2+p0e4j2DX4bWyCuId9T2tl6Bd0y
v+DW7Y4eP7S+Dj+jNJIff/71HzOBn/38JK64dB5z9zCE6vECkNa+R2Pd4+wIvu0coOdBFMvZ4XYZ
uDRfMaQPHBlzFXkdPBRVHsIRA2/bW4sMdmOeI1U5NCmdn14FD/CoEnviNIMGnXuUXkznietd9+my
pbcXfB4rNZRDJE7Yyc4qfOzCCW+dH3lMLbocPmM+CN9l23tbEfahXOrBiRggVtk+VFIBBrtpCTnr
0KbbgO8hNAPXI2i4delmaZ8QVJz/Qg7VbMbUxfGB18UMD595nhav8HnIwiYnejwep4MNxArC63Ii
ThWwluHiwcOzxj1JSAzLWKwLDIFNZDXcF9SfZh+XAtAESSX/+PmPL8JZnkyigY8/8e1iC/BubGeM
peaQbsP7uMGZXjx8uLyOHn+SsQ12z7bB3FW0wLq4oguTcVDJ/X7deUQj+SxnB2fEXOeM7cpUloP/
BQAA//+knUuPgzDWpvf9K1q9RS0IN5tvF64hmOBwCSTSaATkBoSQADZg6fvvI1I9o1nMbpZVUqUS
2+ec933OwVn1DdZFtgVEHeQGzvMLUueobguhSHwPDvopoYfJDGLG+MdDSxSq4188jqueU0G7u5Lv
uUnYNCSiAfkX7ij26m2/mImf/9YbR3feqEVS6aufEPfBAKYmnhH6yPLDMTH2LuKjmFov4+Cav6jt
Z4r5zd0eAs1uMXVBcEdrfdxC60DrQB3KZzG60+OorXqBbs3HFi3Pe8PB/hjrOLjINut4tO20vAlr
bNWCD+a1XkNj7C8Uvc4P8Bk/agSGhuPwNuSWmDVgJ0PZyO6EU55SsWgsi2BQmCq2NeHek+45R2Ba
jDGANX2C6TLJC9Q7vqT2YVF7li+JCllQp4GE86wYp9dMoGdaKtbN4syWyb5GYNmQJ0Zq/UBTq0EI
Z2EfUzNPTSbUNE3gs/d3ROrEop9vivCAN6+RAzE4xGjJoQthlHAq3uZYMkkC5BTuLdsMmkPgm/Pr
dbxpeF9eaLGX7VjaVmCCUbf7BJtTGPfLtorO8LhkF7rnUottSj9ewI2pH+oNpR5/7vN3gXEQfalH
znswHVrD0Qb1Y2G/dgZz2MiuBwNrKumJNHrPeH9Y/j7vdLr2Mc1hlWiyvuyIthLCyRITCBX9lOLD
YaQ9K8XWgUUGDmSKL4z9/Lr2eNsVteKoLr6jyLVq0ycFzrK+NPtaVvOfXqG6GVWAlVvWQN27PQiE
1RQv0RgSzX+FX3qI7qAY4pAXwXTkciJ8v0e01qMJSsXLxnv36PbCpbzKsk4sj5pf51nP0m7rQ34f
mUQj3VCPwe6ZaOXdfdLIGYR6STfQAWs+wejLjELwTnQCBfdpqXGJTv0YaIUA9tX2TYRktBFLPTmH
060wyPxIRXP6WroMReq+qIs3FIyn2zeFX/PUkqWQGJjvV7xOgBw0/DuP7KeH8TJ5eDechH5a86Ec
4YgFyskzzZ8/gddP9frTk8Pq58He6XJsi5u2mAH+tlBMspnqaNBqKrkeBz/mlOFdY2Gw8pME/vzk
YXOjbDkcyxIqpjpi7+Nwxfy+lwFUyrEKuOZgmPOnHnO46lO6f5kpWN7CsfzpYaJu66iYlkjxIOVl
Z42fqJgfnD1AURAHah/vbzaQC/Zh1oOZaBY7mbOCLmcgEMMlU2cOMVP8xNO+82TTxNg15siQO4Gh
9NxgufNGLxpt38LKP+Y0lvaLufRdBqH/zc94B4lrCmeyceBTbBPyVe4hYMliHcG2FcU/vzwHkyxD
uEMTteXLzRzGrZ5o4THSAvFc4WJgvbQFKy+idi8JBSVVf1QRVx+Jip8NmlP+4am//K62ypGxVjNb
UE7+hnpur5vixjyflTV/UF30erPbXu5EleJTR203qBEr4nyd+njJ1BOsY0F+/GPVd9SzOQZGaXkd
werXg3U9CnZW2049X288Dp4PgS1TGztwXa9gc1I/MVtuFQHmpXoGYmiKBevOBx9skqUi6/lASzZW
CazRMSTSqt/m48aw4ME8BFgnBoyHsNo/wE+/dxt9BvQSZpbK0knAcSp9Weucry2oJTJj78qn8arP
LNgIKCTdMB0Qi6z6AVd/Sg8vG8ZD5ZtbqC0GpTZLD4X08+fz6Zv96amvkro+vFiHC+FXfb648/4L
9urRwtdV/xJHKXJY5iYLNtx1E8/73Xn48bBAGMi7n/D+dJPdejvR4DRJaKJWVP34FtmdtR1bmLTz
YZscCuyHwAfT8XEQVGsbAbK0HADzM+E8oNZQwnZstYgqvOJCZ7n22JztHLT3xfdgqT5IsLzfc83k
ZJR/8YV3QdfXrN2TBs7tgWIv2zNz8LbAAr/6aFwBiiXxbTuw3qAcm2qH0EbHF0GFlq4H/crjmGIE
g/rTz7x1/xRfHB09LW3aLd0hwMW01VALd+nuRA8+MJnEG/cEvGQpINr3cWWLfAs52J/NmnSr3/oy
9HVhBx4K3p+3TiHVsnqG+wwv2B6jFM3anqTwEjwjas5k6td6vP3xP+o8PC4e7/N3Aut+Ul9DrTn/
8tGlIUnwOu9EsCipG8DP+6zj9PW6AyakZw5+JP5ClhMr63H9fNC7XZ2AgfDBllcxnFVX567r6zkm
jYOJA0+SiHh/Ld6s+fG86Qhz6oTDYC79MuZAvNzuOAhcF037vSVA463FwfspVfH4eo8clOKsI3wz
Tz053U0C7/t29Qd1EbNUPN3guyYHwjaHT78EmhZA9BoKbN7nV8F89ZDD7Ud7UfwEh5i8heMNTO33
ga1ktM2uB5MFjras4P0JEsDyDpdQdcyYwFXvk+EqE7jyAepH47n+8ysrv115696clAF/VYupLxqs
vEWkpBEgd4cRATyn91JovEVZNeQGn+2u6ofXnBsQAFav9epYgM/QWbAe0mat/1skKN601WKaaNRf
6xkTj+UA4o1pUTP7iDVNtxUHcRRi6txap5caXIkwyqqQ6hPd1/NGflaqfnhhasyeYU6ecHbgaN5V
vNvtl540YcopZqp55Gzs9zV7XmUBylcvJsJB0tnGJxsf8jduv/KioWBP4RP86hd2WqkvlmtmtND/
ns9rPZ3MZbnpCRwh+wZzvyFsMl4P4edvcKG/tz17LOMDBP1jg62+BIydXDjAOK3cVV8+AG3sUw43
0QGt/FgthgtWIeQtdCLsyOJ+hhd5CwP7JATgdX6wKZIVFT7g3GH/LUtgUrZVC2m5Eei2ehRgzDXN
gQ8+5alRBByagby40NybLeEKIYinXdFs4VvJY6pvR6tmO0VY4Edzdtj98TQ6yOSXH4lqqjCeWkYr
AMvotvqLp7nZ79aJN5DX1IJvEHf4Kicweah+AFl36mcuBhOAKssp1j+tyUJfi+D+Mu/pTrdBsWzI
poRGFB4CuvKxEbYRp46fDmCH3POCqbVfgYCzfBzAwOrFjT3KsKVbjM/Yz83REjoRfufFxvgZZfXk
LskZGqOl06wZ7frbw0XQammY//TCR9sdBUj9qCTS/H6gubHyDsqP0CT1ZSTm0m3BDajSrg1AnhNA
3uIIwWbPj9R/eWavTC+FwNOm2eNVT5ubeSm/v/wUbFLzXvzqOYC87NKbyRDbrOdPo5vmQIvPMwXD
LkxbGHS5gxEuIRskrhXhhKKYGne+6udff0Pe8PuArfmpv4SZA/H3MRCObiZGw8wgcOM/LWpPrhIv
BF0ecF0f8svPw1oP1HONHLxLkgWxCoVfqPH3LFjcnViQ5ZGKkH79LU4O0vOX/9enIYDx82vgx7/g
rmdFUHGHpW/EoniANMg5vI+pHm9yTbPUcM6O1CDXhDE5eamwuL5jivgTYuLDhS0Irq+QepT18RRP
nQfdnEU//gyYkVcGvFzAnQhqPrJll4dH4OZzFKTZOnF8szxD1blPRVS+/qARnS0B0v1oE3rRI7C8
lmTSfv0Uc8na+I+3vg81Cn75Z8HR2YMncMTYi785YhrnOLDP23Wi5SHE7LWILuQn4xrIahnHY3w0
h995pX7zPLDpgC8DaM3OxKhxTgWz008JXH9DgtPaf1jiXK2gqGODHk5cEk8qQSlwqbz94y9SifZb
+L4ZDt3W+7BfsOsNqoPGkHqBU9WD4AsyIKfKpLto1/Q05yQRutm3xsb5w4PpQwkHo5HRlffV6HPP
1TM02OkRSOEtYMtbOJdAbauAFMlB74e1nwA/d7emhyB9Fct0kT34bS4K3XcVZmxuhRuce2VD8V79
MiakRw7KVzemu7UfRDhvR0BD7h6ZrmRCw2e8lPBXnw4sl2MSvH0Rzqcuo1f0qMyhlLISOOroUve5
APNDno9K/flXh3/W9TIKHwdOH4YDbTJJPMGX0sCgjs90tz980fzzTys/x1svrePxqL8cCF+7hFrV
BcWM9YcOhvPpSHivfvRjojVr/dFjIgnXuqD8di8C0gd7bG9qFSy8vuF+POjXjzUXrz+cwXGvd2t+
j/pl1H0HhMR/UE913/1iS9kAN3ttDKYNjXr602uP8FLiXVY5puDdNz58BesTA/lwQmzn3BfA35/P
4EvOHzZs5e0Wrv1RbMsXzqTFfTPA7ed8oH63dUBz2rcODLyywteRT9lCZfUIztbXI1LQoZqUvuYB
BM5PfECPCi1nKomwt1SB+htTiknfGjcQ7fQU73D4LP76yb/6vK33c000lh3h8p406v70Jr6XN4js
wwOv/TY2F7e1XrwXnsCMb8zpoIoLpN9gu+q3sJ7WegsEsnWpn/ENGl+vcwnOhsNo4FoTo7ZfGnA9
X9QQyeXnrxpYZd93MDd8D2Yhqwdt0GaGDXkJ0aAMuw6sfJwQ2dmwX38LPjamQ9jFOhfjGs+/fjHO
mKH386qPQCfnHkXJ4VkTMd8usPKjnNSdIJpTXB4i+LgdB2x5z9vP/zZAzlsYbMiY9ezwOhKIQP5c
9XUZU2cMhZ9eJ+pQ6oWIfHQEq58j6spXBWCBBf74mD4qbbFc3sQCulc+KFZfr5qIk+LClX/SnYSk
eqp0rYVFNBg0dV6NufqZBq79QCLyT7Mnz8+Sa/8fEwXi/3uioAs8QnebzkZieec9oLFmR29UcQF7
kcKCrYEs6sMSAanI9h7UeCxRL+SlmiXBaYLau3GDF0ITGIrDnoOnVtXJ9M4axnKuHIBI3yiY0/DS
L+bXzeH2UrbYvqKRjXvwdUDjpjfqou4Jxk81DdCMQ4O6VZUX9M1FIgSgPWMLk8EkB3cUISaySrqm
UsD0EmIOKvdmwbumexf0foshyJd6S53avtezg74PMNxchzxpmJp9kCEDBCfniA95uSvYjSsdsL4f
moaoLeieygmcrvMRu1+7L5ZS7iuQCFQPLqOtI0Zu4QQPs5PgfVGFYMBJFsGXsQ+oVSKpprPdLOCx
zSxsP9Chnu9fm8C7fHJwEChjP4yIRCpDr5HMeratxQvPN/CQgpC8x84p2E3adpqnORNFFk/B4j5j
F1AMm0DdVj4iQTd2UFNynm6/QlRMwWm6qY+o2mPbQmE8c+regnhj6bgA/Bsw6VSrcJ5nE1sBQYBe
SZJAN4tC7O35M5jD/jFB41JGAdQUhS2XbnDUbR0XdP/mbwW97rYLdL8KT5TGrtCynB9HgK5WT5RT
tdTDiNojeDTZFu/6zgHsxcUeyJKhw5nR+WzJn+dUkw+LTeZG+KARqvsz0PXbnVoxUvpvL39SOL7W
CQxaZoxKwbmEqfMk9CCUtTmdrRMHgm7kqLVBCeq5UjzDS1TjQO0qm4mf7tlo12/VYOtCvIJeb2UE
nx5iGJW8j5bzfCagrTye+nk5F/Mw34/AfdoONr2wQ6wKiha2Ox4GYM8TNvbVdIa5f+ICseyieswq
UKmjxM3BcOWrYtbmZIJL/16CcSibgiiSE6niZ4nJfBW+NWOnoQLgUFyCuQ0zc1CKpoSXb+1j786f
+glr5gCfbgrx7tChmCmnuoUnmcjUXxRQTFX/hvB0qzcYi+mAlv2cy/Bzcxu6HyvCFjTnDdQ2Z45o
R0VCVDtVHDzDoaAZspV4aLXtUZPCycehFCaAXW/JESbpU8O2jcJ+fnkWhOb1tqdGLBix2NJNByX8
doLlHpJ+UfBCeJyrHLU68u6X4Q47WE1pH5SVorHJutol+HLuCe92XQ8Wc45FcJaHnBpNeGBLR7UU
rB3rgO/TsZ9oQQzAF/iN/Rf/RMzeWQ8QGADh3bdr6/57y88AbIqIiBu77Md8USHwvyALuLVDyBxy
X2CrejAYviUBI+o/BO6yqAhEE3XmqBuiAD+V+8THTXgrSCo3N2jppY4LyL/NCR9MQRslONPASK/9
5J+mCcYT9eihVWKwQKr6sILpB+PLOhAcnxsOYFVVqM6EXdGw5MJBqz9uiOigN2NGZqkgVtUQu5L9
Medd/01h/9ZsuiO2YA6wOZcAvtso2Kzr/UZ0MrRcyCTS9/w3Xu4894XlUg1E/lYXc3njTaUCvrng
3WzHbCxzJ4J4b+2oPgquuWTnIQFtut9itK0qNI2ojcDms1wJnMtDPMeo60CxPjPrvfmkWG53TgDn
hNyoJ/BLsYw8vCnf3LtgMwodsHBUkaF+uZXYPXVbNMuqZ8DeceNAOdit+TsfwMmiF/aC6muy6kUd
+OG8O7Vl9GG9wh23mvbGaqBo1fB33qCLoogaQ+jXow2qQdt/HO4vfy9OWJzVwntoweaMAjBX+SGB
d/GB6W2r4Jpl5Bqph9C64PgQvgF7vN0I9CPTSPImXbzIvKr+6gveG9UpXr7nTwWNOPQD6WJLPaOn
0QWZUzd/+Wm2FvEMcS5z1K7RaE7eSbGUoiRG0BDiAKbf5wd8LHuRHs7KBrDTzjNU92XviPLLd/Km
J2CpoUmDh+L10johAWTcQLrWg3hOF9bAh/iwsfPppmI4bOQGXoPqi/Wr8O2nb08I2On2iRpZiMF8
UZ0BDuPMsLPrNmx6jdtKY/G7J3JVqUVfvreq5kjRA9si+hbT7qXcQH9zj/RmKtSc4VdPtcuDxNTj
qqpmb5skAJjNAxuAyDX55QNlXwwBHBSIyL2rXShJLR+wA9n0i527Btw+bw02GFEYY8HFUuf4zWM/
KRfEdjvfh4ZyO5CnFCZsOgqZBUz+CAJtUiK0FPrZB/DeJthIyM0cZiFy1MZDJ4wbZVtLx8wjMs/j
GqOEPxTNWfNK+CwTmV4s+20udfet/vbPSpDMZkE1Okgx16zrQ8HcV1MOzT7ig198LZa69eBL3NvY
fIWWSdd8Cl9ukuBgq+Ceubx8hpt5KbDvlAxMmnVMoHOxS3zwFKlevDCaoKGUB6rzYVzPH9X3obU7
KjjglTZeDnqUg0s5pDSQlPfv/B2BJDU8Tnq0ASScww4+80rH+/V8z5LneeotrW7YtMKO9RF3hXCz
mcpA1fkcUe+NBvWRVh6RWSUjsrmDHJr3cIv3M1/WE9rIKuROZwWje6nG7LlzXejbToO356ytWXY7
+XCPo33gzEgvhudVt6D9sl/BI8veMV3jAaqf4kqYR05gToouh2FHH0Ff8aiYyXyDIB7GA8Y8O4Px
WHwMGLXq/W+9R0G/uSAZRpOaKRH6Ocx3AkS2RehWFSgjauZ4MD8TRHdnOyuWWq5a8CYew17Gi4C4
XdvAB0w10i22hwa8mY6/80Yk0DUxWfMZWADc0nh9f/T2ehP45rUvde7IKtiTFAR+Da8MloVc+t/r
w+7N19RQwm/BLqSEqreAD5F5ewcIcTsRJjf1EMzr/jGLn7cwaVVEXaOrwGS+Fgui2eqoX/PPnp2D
q6sGRLHolmZ1Tw7uS9DUz+WKMWVFQWj36LQdjq4BG8mxn/WiDrT2zitEGrs2HmQh9GC2HQZqc+iD
GCt5qH5yrw6mY/Zms+btA9jmez3YrPG5bDBLtPvyCGj5O3/rfgGdhSF2KHoylr51AYb+2OJVvyBW
BuUDEsa1eIdspZhj9Ojg/ZHtMQYpMsnpPHSwV9c7VJayrietqAV4amUdu6AS2TJjBsFFHo5rvUVs
fnvWV131GtW32SOem/xgQL2P40BgKKmXD9aCX/2lgZVq5rx5niA03xFHd0f73E9Zc3OUhFPdQFbs
rv+YoN8CemEXIoadgIankLRQrN8HGqTK8Fd/wcl5yiQW0BXMbaREsG/dgFoVEsG35jkDrJ+XBK3y
YWPYdwts0n1Ct2n2NhkrJU7RDoWNzfXvJ+ukbkHe1jq2M/IAH1W/BpC+2DmAFm8DATbHG3wd0yiA
eRkWszKfcohe1oeimkf1Ir2dBzSe5ZG6Q3WuF7cjLTD1EuHAUQgYOFB38FCBY7ARuzOabUP0gfvc
OYF6qbp++u13lNA8WFKhMufpa/ow5x4cdj6oqmeo6jn81TeWh6+aaVCs4ILeElEor5mUlTwH0ALu
RGKdXbOb5HbwEVQ+PUSl289KrssA7R1K9UXYmaLbkeanrwj3ULx66JL4AQ37llKPVDZi18wV4Fa5
PcmzC8V6CfXLAg29PNE85LNegqVIoL9x7gTGvGVucoM5YL8ojKjvyukF/+r7kCA4UrevlILpb4vT
jrks0LNjH4vJsmcIi+FE/+rh0rhVrpVD9sLezEc92c1FABKX7ohIkQ6ECbxEKITLl8BFKeIlC4+y
tupjbInE7pmXmV+wvj72Sj5FoxCmPkwcdb0DpUvrgS/qCn5jPv7pDSaFkveA9tV+E/jgK3MKkxT+
+YN4QbeC7XemDL6Vm1FfKod6tCouBQJ61dScyFQsmX4UIBwvHt06QlYMUDg+tDraXzF2FIst7fnr
wTQhC/YT5Q6YeZ997dcx+flPcuxeKSzFx0g9UPIFsTz3CHpeM7D1ITsw854rwwHxetALfFcsGlYt
8NNjyZYcwKQlxxyeHsM6YYf2BRuC3IBB6GDqCvanZ48XzeEr3XsBfPG6OV2bkwcTf3R/+b8fHlYy
QOe1KwLpbqdguly9BB6IElDjIWxjaU+nRLNxNAewUbRiIE3e/cWbcufvdd+T3FPfb37E+JROrOuS
ooKXkqR4v7PbfqzVgwerJhlomfIm2yxzmsAapvdA3HZpMV8qEIDf/uxa+xQv57u0wMPBKoMztb/F
9EiSBVosWsWBvS3mpH/ctDWf41RE22KUPMODpX/6Uq+rXuzry+0WzoDz1nh9Abr6f60NkEEEkbxq
NrzGB6iadMDbIOuKydbsCEaO3GA3r0C9lM+zAR/eXvurvzSX9CNY9SM2lhAB2nNRAO9N5v3VqxHq
iQxfSRoHkto1qx+8chAUzZXqYij09JLtb3CZF4Uom+pQ//wzPHN1REQRPQoi86qsPMtUDjYZ2bLh
Zl23AJ8ch9pZpxX0ab+PMHHkI107QvWaLwJoxLFPpKWzi7/443eHHtsdGoqJQ/0E1ENRr/F0MKf3
uA2gui8qauREi4fDS37A863O6K6zE7Yc5TEH2r31gqBOZcBWv6ax67Jg71M5ZqcVvQBXPY/1bbYt
JPl2DMD+avF097TFeAbzyYJRrj5oEKUFYh65e+qDVDvsrh2sReXVFs4YHum2EeJVLzUVjDvqB7yW
fns6vQYZ+KlSYAMJdc1cLD9g33rBTz/2M59vOe1mZZdAunYdGMdF9mCSUIfuX3ZVTIGQnX/6lhpS
6IHldB6+AC3KPRCPqEV/+cV4xy555ELC5mm+dcB4lWHAFsTFw/O6t/7yqz8o0Jz7ZbppcUKP1M+V
u8mszGrVn34J7HILxJ0ep5p3dTbUepK9Kd7unAhM7Wbh7UUQahZnRg6oNp+oJ1YmGOrRFcDPP+BI
qeuhFsojFMMlpboq2Gx+qocS7D8Wh1HME9RMSRSpu+xYUJ+WI+vtIIPw27pnwmC4RXP79RewCacH
4e/syhYxCyZgo2gKpI+9MedMxVuga7cz3X4yK2b2XZbBcGIi0VaeNO/7ryGHrfyhP7265jvuF49k
RmGBmH2fVNB80THgZ5aDaa/5X9ASV8PHj7CYc+45FbwGjy+Rdl3PWC7tI3C6PTfUV0s/7qqkvAEu
bg2y0UmDZhxBAszNTqAORg7YfFQrUG9LdQ6WKDyCxZeJoQaGgnCdhG0xkSRv4aUZElxuy6RmG8hP
6i14PPBpRChe+cYCrtusCqa7EIOJq/gj8F4Wo2jlI3QXZB3Es7MlWq0IiBWk/ELPPOrUmogTM/ft
b6H2vBik2obRqhfmCB421gmfM5uYi9B1WzWtnh12PzYyBWs8PID+uhX4cC3faAn1cIGb0/IkLA7f
aKnunA9+/q20ecekPOR8uPKEYOVnfS/Yww2Uw+kVcKEyFksWnlV19R+BHNoEsB2dOogrGeL9Yj/M
Pz1OM64iL4SOjOl4LrXNPBUYv5WHOdybUoCrXglOO1LHvf9GubpDURlUYTjVjCu5HPa5h4OX3d0L
drffjbzqSxp8lH0/B8UzgTC8+NgPyyV+6QYnQulzAdRsSYRIpp9FqITFd+Uv1eonQQMXzDnYt3ib
EQ0vDhwcb48tnlg9m7lLBH/+4k+/F5Uqwzt5hHhndUOxNOfqBsNK7eiu7jq0WGE8qCvfIeKMnvF8
Ql0CK4JeZGOiyBT0l5pDeb9YeI8qoRhP4BHAlKtbHFjlox4P0XoBYR/xRIsVsR7ag3uGHH8YiVrx
m4JgPXKgHBYCxed0qpe++0Qg5OQWH0NhA8hABQJV0FTUoOFgLpBXI/j8IhKQVZ9NQ5NDeDoTLRAq
lILp3iQifN95So2jUK03ES0Egntzo8GYSqiegvAMnm4CMf6wEjUbK2yhTY8DaUok9XS45Q747Phb
8BnsLaOIygZYeQZ2Fbur2U7yLXjO65Q0LvH7aWOFjRZMI6R+zDdo5SspBHVT0HLVD+N5AREUpNeV
brXwav70NWiH1KE6EBwkArycIdOWMVDM6tRLHpZ9+MndGoeRMKA//39qn4zupyroQZbtpx8/w1tJ
mNDk2nPy6yAG01dY4vkTZgucX8wKJKvzYwYgJ4IcDjsamKVebIpvkMr72YFkrefxwuSHBevvPqf6
yo8X7xkJcL/fmXgHO/M/fFGclzAQcZfUE2+dt7+fiVxWAA1SEibKfrYg9VteLwQpuaR/fm48KFmx
CN1jC+fXbBE5t0cwoIN/A66984NFCPt4GpJIhtI87XA4hZuYEGkn/vT5jweyX76A2q494IOhyIwI
XWdA7I4KDozyiSb7cDgr641sgWxVHPv5I+DQqCLfW/WuZ1XdEyjNawdR4gHoz8HJg+kw0EDc2LAn
nkxSeHJkh3CBcuhnva+PIFCBSf1G0WKSyM0EL48hplZGPCagg3WD8HDBRJbsvUnt4M6BlueFQPar
az19myJS9/XRoQUqSyYOd+ELDRQH6/o+6mWUP1vYColFd2rXoGHqXxPEH8ugoSa8arKuP1Dm4rXq
/TdaLNX1oLpre4w3ac9IIL+I8lz2A17PE5rKUZ9AQIAVdGu/Y9nrxRaKpynDZ60Si8/e0Bp15QEY
hSWMJ4gaC25PtxcNOmVfTHehlCGLXz02hfBZEMpDF/z2V/HtFxiNiut+fpsinw9qkWaYgFI+NXRf
2Bb68SfI8Xik2EuXQhSzYIFC9qqC5SZs2eaRH76gr9wD1qHwKlhvjwO8QBIS1alQvBHDqwpiR81/
T3AUzJR8Ajen6UlCEm7YUAtJBGd73q/54dhPgXA/w1FhHVGlqkHr/iV/vKRd+zPTY9Q9OAPoUSMJ
jzGTSymBunLLqMlCA43KfM1hdns+sR0SvRcjebTUH48zWVghUoTnCLoL0Fb/bPYS2YxHMCBNx9YL
pT1zSXaDy2cBhHeUBizc7nBTZNpKWL+Fcrx8qWbAyk0XGrTKHizXc59DInFv6iq2W4vH50WF5mEH
glkVXmzyRr+F3HgWsW4Iwcp3JhnsIyAT3kuj9Y5N/gbM95EL+n2lIynnEgKvXvUhytWu++mQZA3s
OPeDfYNvi3HRbyVczwO1UuLV5Qu9K0gZLFeeK8TsunMX6HlgIpsU0WKqERVAbaVv6qy8bD6AZwlN
rbTw7tR5K09oOjhl8EyTE7qg8bjAB2yJp5Fl1XsMB+sdqrnMEbm0x2IINZT/+YUZhQB1unaQf36a
njTUAeF13ZYwFchIVr1n9pW0XeOZKoSr0nM9PYWyBdmWDNQohCfquv5twB/fRxr/LuaX53Nw5Zv0
x583TsVtoZ0dacBn7G4ukhS0StTK92AZiFo08RUdoVI3lBon4QlWniLCIjkt1KpRZpLl/IggwRyh
lkRejKHgbvz4fCC5tsKeu/6bwNeQHKmjdsRcKsx54BmheeVnGzbeDPUGw5vaU/QuFbN7XvcO5HaN
ifdxFZuEv88C4O7tFhsLUeppaXLj118MPtdqjucTePhwCReO7squ61lGThGMHTnHYS90Pa244gZD
YbwHfKKY5sobXG3MOJEsavjt+7Okt2BvHhG27x1Eg3dSHMChxgoETHy0eSyqAecCYsKtvHKCwvkB
91JkYH0OT/1wtCcH1m7aUQzSHv30FHz5yQmbfrjrKdqZLbx/H0dsDqFRL/bX/U/+QJ/yXNNNcJzg
VXzU1LiEtFgkyWlg+hhm8t3zZ8baW7EF5miL2OxDs2CP1zv/+XvsJXwW//QiwMdRIp9rFRaDe1Jy
sPpJrPvCwNqdXqSQPllG9YMwmqTgpSNohPSMDzDl4oETzj6Ep2K901PRi8+Pj688iAgNSot5kxuV
dhMfF5xPlVVLP1667j92XLQrmLgZtuqHc+9EY2XNaPT2buC+VAHVuZAVtOdyH+41R6WGRs5oktFA
fvWVOvcuQsPxJLswSWsNo9Xvz5vce2g7e5dirLBL3USjmcCmTHJSqeG3nsdFdmEToTiQbDtHK2/l
4FXO8oBzlSBmj6CQ4awxnXCd8imon5kpFKX3njQZ+bKhOWwJvEaPN9VXvr6kclPCbR0W2DCEpl68
ro3++NJG7qSa7PQiAb9+sHTtXCC4tpL8/CEBdqn1M/fVDU0xGwFjlEY9i97GDRbWYFPTCD8FKeW6
AtKnAARs+K6eSy8I4K+fUKz8TNRzt4Mr3yDTJXPAQrMd+d93FPzjn//8H79vQWi76+21DgaMt3n8
9/8ZFfh3fs3/LQjiv6n4920JZMgft3/913+GEP716bv2M/7PsWtu7+Ff//VP6W/a4F9jN+av/+vX
/1j/13//438BAAD//wMA5ou8WIVhAAA=
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 7bd02a80b81b75db-LHR
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 24 Apr 2023 17:46:30 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
access-control-allow-origin:
- '*'
alt-svc:
- h3=":443"; ma=86400, h3-29=":443"; ma=86400
openai-organization:
- user-iy0qn7phyookv8vra62ulvxe
openai-processing-ms:
- '68'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15724800; includeSubDomains
x-ratelimit-limit-requests:
- '60'
x-ratelimit-remaining-requests:
- '56'
x-ratelimit-reset-requests:
- 3.264s
x-request-id:
- 327380602cad71a931c429f23bbfd21b
status:
code: 200
message: OK
- request:
body: '{"input": [[8134]], "encoding_format": "base64"}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '48'
Content-Type:
- application/json
User-Agent:
- User-Agent-DUMMY
X-OpenAI-Client-User-Agent:
- X-OpenAI-Client-User-Agent-DUMMY
authorization:
- authorization-DUMMY
method: POST
uri: https://api.openai.com/v1/engines/text-embedding-ada-002/embeddings
response:
body:
string: !!binary |
H4sIAAAAAAAAA1R6XQ+ySrPl/fsrdvat80ZEpMt9h4CIgN0Ifk4mE0BEQOTL7oY+Of99gs/JmZkb
E5DY0lW1aq1V/R//+uuvv+u4SJPv3//89fc7779//4/p3iP6Rn//89f//Ndff/3113/8Pv+/J9Mq
Th+P/JP9Hv99mX8e6fD3P39J/33n/z70z19/b4tRxarabbpl4Cwc9eakb2bxoUZCPhQJuP6HMz3Y
LlxeWYsSVRBt2SZerI1BDsBDnnFdUd50DzSYa8BQwCzGS9FaxVIa3qX63Uc98RZa547P+/yCtMSU
CPY6A/Fe2aZwOY0527z1j9E8r+kMEXctsz1HsUubwylRXw+aEydKpHhaD8Prq4ZULpIsHlassUB8
b5wYuD6iEb8uJzST85xt5PXK6PnhWoIdeiUxlsUmHg68DcDV4jldobEoyt2r8FB04Bv2XHQmYq7k
KSgPNybZ6wPqGPrudDjNA4Ir4yDcrtttErRWoxMx20slejcwLcTq+s0cM62M8X5uczSnmxUx3rsd
4tEez9T8muzJjn2ckO9gBei52ejMQccuHOPLvQTDnlk061ZZ3F+J2kPTiCMdCQvRsKdnC861tMXi
eeUhO+tcQuEia5jeHit32GubBHRn7hLDOx8MioVTQ9HeDHLpPrErTH0LgKrVjniXuRYynR4BRff8
S8z5dhvLXr2y4VA9SqZ/onUodmf/BsvLzWfR/ntG4tDdM1Sdo5pZwjx0/Hp/OOhVUo2qlrsxZG1G
bis4KTo5vmsfiax8VbC1NUyucNkb46sP6FowcWXWvW+M+mr5PhwfZoLrw/ZT0BgTCpIZYUKCzCvG
oOgySOZlwDbmwTdGbUYi9algn3mjl3a9nNs2Gp3jlhmVpAvJ2aklJOz2IlG5OIqRiBWFd5BQYhoU
XDHT7hlKNp8b04NuhsR70Hwox2BNDnmpddxntQ7zPJnj3BSNwcMx7X/rE++BurDyDm0EoIUeLR9t
2Y1HKeMgSvygTCpF0bd7Z0ThvvLIQR6XhTj4+ghWHjKqzIklRnXcJDC/9CFx5qddN24DG2CRhDvi
FtumGPb7TgGFzLYUPc5j3K9KWYKI5y7RKynsxpt71+AaHq9E559dOOjN3YNCcBvPGErd8a04p5X1
ZBdmr/NO9OalrWG6xitmvWJ+oBsFzKX0IM5U34wHKxOJet5ReV+cQn482yfAZesTQqXEpRcWOnPW
GR4zUx+HvOqqEfpvqxHXroQQwZJ70LHnidYAuSteyiNHQV4y2jcZhAMDF9AMHTkFKdrE4yuiERzk
7oz9Y+R0wyFdz6A5yBLRyxdF9Y7ICmzbqsLztHq7dRu8PVicnzGV733jtvUHHFid0xsWn8gryur2
Utdnvu+Ju7sWYoyRPsK2Xx9IfJkfDYEWNxWOm2VHzHPpGUM1F8naHLSBmUt974qPIAoU/djSlqM2
Zvq+5kiVnBnZX1Q/HOtVncCRPA1m6nldMCmtKdrP8xyvLier4Cu5s9FWPgds0x4vYnzmewz5+d6R
3dKLwzHZni7oY7AeL4pkcKd8zqGdb0d6PmjXQtzGvFrfnOSNf/vz3d5dDVW67ONZfW+K7z728Vom
hk+lKmwL8XI2ypoOzyuxaWbHvBiDHH54YsdpKXprzBJI/SZj9mG7K+jTUhOY8IiG3GIuvxKVImrY
ISFRUaNxK482MEW6kDPe2Whki70KRX1+M7vkR4OvtG0LhfK6kH2vpKJJVsd03cnJyLbyy0fDIx04
LHRk0LEuXWNcfmwFpnhg5X1RxfAd1AQuuuew+3oTdpyrQYsk84apMBW1o+HelX7X7HrKW8Fwb5eg
mN8TZlP8x/N7X0PQRDH74Ss764qMjlX6onl7tAzxeuARRfTRM5KEWcyTtznCycsshp/fj/vbj/Uz
Gb7MOTp1KFoCMsqQ7ZDDt9iJsuoqDtpykbGds//GgjsfD10H64VHqS06IVb2DU39hO3jQo4Hqzjl
qryJFboKjm04qpeRgq3iDV4vqtJoPCYw2t3TNbHnxEJSu7xEQIS7ZeasXKOPe5Nt1DceIju20Qr5
dkIpFEV1Jc5Yv8OmXtoWrItoiVX6boxffgA6nRh7GmljjMnVbsEo1YJ+Xvhr/ImfauMXXgKMaHjU
iYeC5haTDdlHot7nkQ9K3A+0ksJHJ3gwWCpVm5a4j/MYslujOYCyXUzsl2S5i1Cam2g1kxMs4Xrj
jrPFx0ONmx7IYbmyBW9mKw9JDx4w93XDBb9KhQLpfSGIt6gkIR7Hp4PsEJfkYJ1FTK0kSOBQZzo7
kjYPe+f40AGWSUQC/vmE3Ct4hOLW1Fi4kKuYYnxPIZ7rc+I+9UMollDZELnfAq+OXdYNB3ewgL2k
FdmuHzEaNSI4iufanFhjagih0zugwt5LVMGjXiyicPDgJmkxlWVN6Zpzb/Qgdas3sexrJrjh3R2U
a2lP+yPZG4O8fEfodVFkElrvc9c3ka2jvpJOJGk3hpBTyFSIgu8Gr0quxU3vRR641zih6aVYdfWG
hz6yr+uRLvhw71o26y/Q7qoYS5v4GoputsyhPqo3ejTKRgxih2qIt0+HbPF3LIRUGzbUsdXhRZfv
uzGINibEyiHE6+XKRkOktBFkx/I89edH/FboqK9P68OARdBhg4eHb4Ye39WFOMwdURfdHEV13ZZT
6f3VBG/smKL7t/KZtckUdzzvVQWGs3PGUrjk6CtTHZBHeczuu6Bw2YSPaJnbQCzjIIw6dRMbNl5y
IS5t1Y7t1E0JlS75xLMrw+Ccc4w0CN4Mp5rnDvsQX8ATLGZ6kgYdP2WaClQJDWI5+5lRSaGcorpM
OfOoqblc7toSKafVltgfYyGmfqXCKvFNvN5YRUf7tYVRtfukVDl9kpi7dlPDYWUADircIFFvuwv6
2PbAdsN1IwQp33x9zI2EuA+UGN/LfF6DXGmUOGyAjs7y/PLrt8wruryj1sagsHyWBTHvnzoehyj3
UB4aJrNdtBI8kQcLHl3OsDo7yLFYRysPJv7zw9uOrz+mDtL9eiDk6WExLlzDUqf3o+IT9d1vf9ej
kBGeXc2XO0C9uKBZt51jJfuexLjniwSG9FQzXXMKY1Se1EJ1bu3xMke1MaoXtVdHtf0Qi8afYpzb
Tr0iy8phe8sdxIRXEZQPx2MbzRGC3/2GAxH7Lfv1P97Oax8eN7gyrAdWzDbL7UVtRaYQ4otj8Yd/
3xTR4A/3/W6Y4XMLdW7u2dPj55BLlvOnn1F2vKN46n/O7/fozOsKJE6rpYTyxSfBneo08TjKmQYW
Qzs6Pyytgs+Hcwbm1jrhBf4G3bh9HySY+C8xcf0y6GneXGA2bh94tsVDzNePVwX4srCIZ29RV788
NYBbRY50ceEUFdk+koAk+w8xgq0ZjndDxmBFYLP96eN2U7xM0ALlhWcZLF2mkH2F3H2wxyI8LpEQ
K+0GYj63Kb2aG4OfMluBeaWY5LDYJgXPOETIxyvOHGVmFQvn3VD0w+tNNxtEd5AQoOx71oh3fTsG
d2a+uf71V8/U57FoXy8HPuvwxcjNNw15z9cJLPz+wOz+YBSj66ETKEGeMptZo8tIbJyAbRr7D98Y
zr1BV+LhzdkOfXUkRbKuQxDcZkwzyqgYqRTJ8GoemGkLt++Gg+r16P3eWHixT3M0WAtb/vERlqg8
D7vIulQoXK78ib9UxbiNuwj016whu1PuoFFFhYJ+9bCtVkXH/dMxgI0qIqqo23vIj/XBQ4rJToSo
6qn4BlspQgcrFPi7shXRrD5XD6KrY7Gd2M/dFo08X5+U9FdPdihXn4MJibGe08+0Hr2dRArK3r6T
h5ITdwitLkXqd58xY73SO1Ge9ak/lldm673jjpeTd4NpPboijwf6Nuzrqx8MD+K6UWbwu31VUb4l
KiHf2u4GY721USZ/txSYL7r+IkBGRIuA/fCg84+1gpa3cYlXXsnCP3x4XG8wM2sjN77jzitRJl1S
YtpKg5g68wK4DuaLrul+6Liv9zPItweV4YIX8fD2+bie+AWF69txhakUKUTpEWGVDclPrzhQiNEm
G38VhL96AdhZClUmfBERzpL1T/+tmdx3Y2oZt5++xmtTxx1ltiUBBWoTHG5K8bXs7fjbD4yOfBPy
FzqocL7VJ/ZUPkxwqUUZrFuvINuL83Y5VsIb4FP6ZPsZpQVfxUmEbmuPss3n7KJxrzcyaq/cYwcE
W0Me9/0MmJ1KxGuyJOSfmeNAKJw/ejXuzl4YAOpOHiEUj/GoHnx//bqoMh41xzDG+Aka8gW90cUm
tjqpfD0C5OGyJc7Hlgv+2w+jVAqmlQl2v51b2GAEFxerZ4HjMX1FDirmZ515j/OrGz8nDcPyuHYx
1zrP4NLrbsGQXmra+Y3vCpNtdHj75o6Z728m6KmMSmDIW//0ZPe9b86SqgXqixiP9hwORecn8MN3
Ih9xwY9py2H3UHQWWFlp8E//kGFWgEOHukSIf+7+DBqzfjHD7Sv0w3/VPAfbKV/zrpatVQSLu5pR
+QpDwavcPIG9l55Tv70ZAkWOjezz22U//i5X/JPDtN9kI2Iz5trmVqF2V8aUh7ttN0raqkRk/yYT
X46K8fLmPZyficZucVqiEV1fI4r2FyD23dXcRb5VMHyvxZztd0FhMPel6UiXVzVGyoPG7Y/f1zdq
0uWw7opvk9QRpHxxJPaoP9x+9+owrCJSYZpdvjG/+68RfvxMU6Mk7I7vREJhMDtiubd1tFRyK0Vq
MT8Q/ZAwd0i8NILJP6Kq8ngaYzNuaxirzfCLd/fdh/gE/aUu2KQ/xDBDNwq3tr38qTfelvfsx9+J
d1yMiL3C/gLa+WgzO4+YEIvrQUGy1zbUCR8HYyjupQNWs4vZfn5S4vHu2SZ8tqNDPPlrGX0fJj4s
IFWY0yvY6IHNb+jM3Z6um6zrxKd5pxB8zmu2ey/D/9IbVYJPePnCB1eQuZQBvpMv05L7IARftgG6
LpaM2RMeCho4Ggzhdsm8AExXvML+pNIderHdFTLErzPrBCdmpczZ7zx33AbaDMDsj4SY35U7rrKz
g35+Qrv/LtBPH8H48gtyqhsXjYt0N4OPU9ym39MEv0qdinZBc2QbT5bdIRMJV6XHGNAZ3WfoW8lH
DSL95TP3qX/jcf/g1U8/T/xzGbfKk5rQ3zcOyUV2/i9/zFczk6RJeDS4BY6Kbqq0I5EbcdEFm4ii
cF96VC47Hncnfr7Bjy9nu83B6KNI+DBDIaeLIdi4i+LeO6DLqGZa673jMfhuAVp829HhqdzjMTbf
Aaw8MyQ3cutD9rg3OiTE4+zHB8dhHt6gMG4V22n3izumUKtwPTczurwsSDe8i0WNnm1s0R9fZWmh
Zr/8oYMny0ZTlSWFoBt0ulp/HrE4f1odHUprTX7x4WW7pHA/YY+OoVeFw/T8+tfvzUlf80RemdBo
JMF/6qOOVyeIW0uj2e5zQd9FzKrVKglMooeeFcrwQgG6NN8X2c7Krzt01aDCV/PuzPCQjOh8ltlo
8isZZmjmUokdMIz94kF2xiEPOX8aKtBtrjLC0DcU377pf3yK7Kb1x6efqOhilgPbD0ne8eNZu0Ab
2YK5bqS50/o+sIt5IBN/LcS6DNs//I9c90H3i+dPTzCnyj00bqz7CU5ebtFZkK3D8aPHKppn1o1o
srLrZLJOHNhp1opovpSJsR4u1Q/PsOpIO7c3BucE587r2aHgJ7c8maODJr9o4pNVyNLAwmDuEkR+
+kFM+gNFozri+MhfoSjdTEfPISqJpxIV9f3bLqHwyhVzL/dPPO7PFQUpu3S/ejF6CG8W4ndt99OP
MXs5GxWtokNFdi881X93+8MP8LjrlwUrV6hVmXQ/MuIfdmLQsZPCwekV4q2MT5z/8lF+vRu8/JTU
7R8bp4ZbIbcMy2OFhv5Tz+A4kgOdJ6EW/vGX8f3wnd5X+vE7C5qrt2LWp5yhQTMUUH/43Lwvjitt
3NZCqbopiaM85m45oj0F01W1P/1NmfzS1da5LYjh3/bxMG/jBHh2pvTNXSaE+JxMdKF2xfCluBfD
81lLwJxljOWy82M5fko6ynf+DcvYU+NmFzUOxFDfiOW074L98uf21dfEXOqNO6weEl9p+NgyLzt6
Rb/fGRmsRVmTXVYXIf/0Z+mP35ZP/tv0PjMo861HyORn/vw25IIW0HiuZgUv8S1CDS9nbMuHVSFi
ye5Vub6fSZTsSdeb2cFE7BsLLGnEEHytKCc45/qd7DbZLhQ7dVMBMeUN5StsowHUV4ve9HCncnXr
wqlfVyg7Vmc21ZPBreuRInS6MCyNd8PgsOlGiFxWUP7IDIPb/neG4oXcT3qzd/nzoaU/P5s59ksP
2boMaziG6p4Z98/K4MuSjLARazrxlSCsV+VMhgk/CV50i46WX0WG9fbzpeN2nhRSvJ/pEOo8+4P/
LckPN2CbzsaR2r0KOvnL6MzmKnOPZCXYo3BTdFtj+tNv7lD4G6o+hXAJaYenGHtRcJj8RdyyISmm
9SVQVWiJGTgLJCIAEwJfu5JLNTu7DC18BV4f60O2NV2HIi3GHCZ+y4xl8Qr7aN4n0C5WT4w6+y3o
xjqeYDO8d+TXz8TnUpdA5xbDy/ugFkOeP3O0fun+T28bbAhrB6Z8xTN2lmJ5mc51SMHU/9SfFO2t
GTy36e6HVzF9dl0NBXOPzD1Z+c+fz9F3f+vZvdBsxJfR+6JO+UprPObFQC56CeH5orCDhR4ud2Oa
weQHE40u3JDWQ1qhWVRt2WFlK2isPltTFdXHZO7EZ6XHiWRQrpdLzD3/YVBFBRl28bL841ct3+bW
g7V3v2P0QInLf/V3adiLOPtd7w7K49Cjhlcz+omUDjWWfRgha2f3if8t4iFZ3VPQb1VJtvtUF+PF
aWZQPx4BS1QSoSFovxV8wVlM/qEdSixNZPQUg0tVyNA0H7lF6BFfZgT7NPvz/5BCYMu89vMtJn9Z
RfJWWjPXb7gr4t2hRhP+Er1xJNRcNTqiqT7JQXoGiKvvtwLPlycoOgcXg59wUkGMmwf7zXPGMSQR
sG7jUdE4pcvnXnkBspoNzDpoleDFoTlBfK4R2SyGd8H3eeDDhLdsk8xb8Z3mcxCmL5cYpXbpBscJ
Zn/8pfYht12qz+QUFqp1pPn2PoreHFYRcvnwYvvsW7ryorpLsG9X/TQvkMImb5sbcrX7nPzmRcxW
eYv28omwnSE8Q0jGcQYT/8dStTrF9HOyMZr0ODOS9IVGiR082LKzREgGVSgccZbgWetPPGxV1xj8
UbutJ3zFwjAyNEzxQ+uX5jPnY1+67senh93VZdhCXjg47xdddwZtqHyo/IL7p7sP1jfP2H7KTzrv
hYT8+TGg/VlhxlA7Bx3uj9uT+bHzEj/+DbtlsCNkf3ka/LkZKILUOrMdzVaGuGUz/6cPf3zC+MPX
m5l3YW71mcVU65wcMpltiem6tKC57VdgqsRkGM/qYmBgAKzPQ8q8SY+zyY+FJ24jCpa/QTx83iW0
UW6C/PyAscNGvh7i2YY4lvsyRustKYjoQ0Gs9/gqpnhfYJcvdfz5lNgdUI19WPj0MOlDU+RexgLA
X7kgm4rlhuj8TvnNW/BcPtKOmfp2Bk5gIbJ9e3a3IM0ugcmvwpKe28XQJPXtx18nPzFA42w9WKDN
Oo/YaDyFI2qrWo2PB5nt15uw4I/TLkNrTXoyL8y/op/6xZ/9dzhyYiE+iQm3+fv8m2cVkx/XImEP
KnGKaoP+8C/v6Bq0ziOCRJffMKjDeCWu6jSh2B1wBrP1BZODcyMdL8Yog/XgbYgz+XF0z9cpHFGc
4ddmSRELWHVZTfXzZ569GG+KCpM//Ud/dMdYvf36A9Hv+afjm0qR1lP/pT//hJ+a4gTz+Pn6zaOM
0e8vCmRVcaISjFknhodTgXK/OET35Hc83Kmv/OHnRnw6uTytWhXsvfxku1lzEEJfQoTWjjZitahe
QujJt1bPbK0SI/WfxlccLxZc/PODbV/7PuRuYJqw3rUupT7N3OGcNz6aVZcBPxZV6f6pr998WU/d
bzfljww+KB1dTfPq7rGTeliElvTzh4rhnpQl+vGrjT7TDO6vnOSnN5ibjaYYOAgd/v6dCvjPf/31
1//6nTCo6kf6ng4GfNPh++//Pirw7+gR/VuS5H8z+c9JBNpHWfr3P/91COHvpqur5vu/v3WZfvq/
//lr8ee0wd/f+hu9/5/b/5rW+s9//R8AAAD//wMACEOkc+EgAAA=
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 7bd02a842c6375db-LHR
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 24 Apr 2023 17:46:30 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
access-control-allow-origin:
- '*'
alt-svc:
- h3=":443"; ma=86400, h3-29=":443"; ma=86400
openai-organization:
- user-iy0qn7phyookv8vra62ulvxe
openai-processing-ms:
- '263'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15724800; includeSubDomains
x-ratelimit-limit-requests:
- '60'
x-ratelimit-remaining-requests:
- '56'
x-ratelimit-reset-requests:
- 3.725s
x-request-id:
- 11dea59c8b54d5678da987091c2feaa0
status:
code: 200
message: OK
version: 1

View File

@ -23,329 +23,329 @@ interactions:
response:
body:
string: !!binary |
H4sIAAAAAAAAA1R5W9OCPLPl/f4Vb723TpWIQNrvDgGRkwmCx7kCVARETiaB7D8/pc+umZobq8AU
Denu1Wut/Pd//fPPv01a3rPPv//5599XMXz+/V/fe7fkk/z7n3/+93/9888///z37/f/W3mv0/vt
Vrzz3/Lfn8X7dh///c8/0v+98/8W/eeffzflpGFN69f9MvIWnnbx7i9m87FBQt6VGfjhmzMj2ix8
XtuLCtWQbNg6XazMUY4gQIF5Vilv+xsarRVgKGGW4qXo7HIpja9K+7jJQIKF3vvT4zo/IT2zJIKD
3kR8UDZ3OB2mgq1fxttsH+f7DBF/JTOXo9Sn7e6Qac8bLYiXZFL6jYfh+dFiKpdZno4qa20Qnwsn
Jm72aMLP0wHN5KJga3mlmgPfnStw4qAi5rJcp+OOdxH4ejqnKprKsto+ywAlO75mj0VvIeZLgYKK
eG0R1xhRz9Bna8BhHhFcmzvh9/12naGVlhyI1Z1qMfiRZSPWNC/mWffanK7HrkBzulaJ+dpuEU9c
PNOKc+aSLXt7Md+CCuixXhvMQ/s+ntLTtQLTmdk079U8Hc5EG6BtxZ5OhMVodOnRhmMjbbB4nHnM
jgaXULzIW2Z0+9ofXX2dgeHNfWIGx51JsfAaKLuLSU79O/WFZWwAUK1uSXCa6zEz6B5Qci0+xJpv
NqkcNKoDu/pWMeOdrGKxPYYXWJ4uIUvczxGJXX/NUX1MGmYLa9fz8/XmoWdFdarZ/tqU9Rm5qHBQ
DLJ/NSESefWsYePomJzh5JrTc4joSjBxZvZ1aM3mbIch7G9Whpvd5l3SFBMKkpVgQqI8KKeo7HPI
5lXE1tYuNCd9RhLtoeCQBVNw7we5cBw0efsNM2vJEJK31SrI2OVJkmqxFxMRKoVXlFFimRR8MdOv
OcrW7wszon6GxGvUQ6imaEV2RaX3PGSNAfMim+PCEq3J4+k+/OKT4Ib6uA52XQKgxwGtbl3VT3sp
5yAqfKNMqkQ5dK43oditA7KTp2UpdqExgV3EjCpzYotJm9YZzE9DTLz5YdtPm8gBWGTxlvjlpi1H
1+0VUMhsQ9HtOKWDWskSJLzwiVFLcT9d/KsO53h/JgZ/b+PRaK8BlII7eMbQ3Z9eindQ7Qc7MWdV
9GKwTl0D32usMvuZ8h1dK2AtpRvxvv3NeKRaSDTznspueYj5/ugcAFddSAiVMp+eWOzNWW8GzLqH
OOZ1X08wfDqd+E4thIiWPICePQ60ASh88VRuBYqKitGhzSEeGfiAZmjPKUjJOp2eCU1gJ/dHHO4T
rx9399UM2p0sEaN6UtRsiazApqtrPL/XL7/polcAi+MjpfJ1aP2ueYMH6vF+weKdBGVVX57a6sjd
gfjbcymmFBkTbIbVjqSn+d4UaHHRYL9e9sQ6VoE51nORraxRH5m1NFxfvAVRoBymjnYcdSkz3IYj
TfJmxD1pYTw1apPBnjxMZhlFUzLp3lDkzosCq6eDXXJV7h20kY8RW3f7k5gehYuhOF57sl0GaTxl
m8MJvU024EWZjf63ngvo5puJHnf6uRSXqahXFy974d/+fDZXX0e1IYd41lzb8uOmIV7JxAypVMdd
KZ7eWlnR8XEmDs2dlJdTVMAPT5z0XonBnvIM7mGbM2e32Zb0YWsZfPGIxtxmPj8TjSJqOjEhSdmg
aSNPDjBFOpEj3jpoYgtXg7I5vphT8b3JVX3TQak8T8QdlLtoM3V/X/VyNrGN/AzReLuPHBYGMunU
VL45Ld+OAt98YOV10sT4GbUMTkbgsetqHfeca1GHJOuCqbAUraex60u/a3Y+FJ1geHAqUKzPAbNv
/qfjy20gapOU/fCVHQ1FRvv6/qRFt7dN8bzhCSX0NjCSxXnKs5c1wSHIbYYfn7f/24/VIxs/zNt7
TSw6AjLKkeOR3afciqruaw76cpGzred+UsG9d4DOo/3Ek9SVvRCqc0HfecLctJTT0S4PhSavU4Wq
0b6LJ+00UXA0vMarRV2ZbcAERtvrfUWcObGR1C1PCRDhb5g1q1bo7V9kBw1tgMiWrfVSvhzQHcqy
PhNval5x2ywdG1ZlssQafbXmrz4AHQ6MPcx7a07Z2enArLSSvp/4Y/7lT3PwEy8BJjTemixAUXtJ
yZq4iWjcIglBSYeR1lJ86wWPRlujWtsR/3acYnZpdQ9Qvk2J85RsfxFLcwupMznDEm7W/jRbvAPU
+vcd2S1VR/B2pgZIuvGI+c8LLvlZKhW4XxeCBItaEuK2f3jIiXFFdvZRpNTOogx2TW6wPemKePD2
NwNgmSUk4u93zIOSJyjtLJ3FC7lOKcbXO6RzY078h7GLxRJqBxL/U2J13+f9uPNHG9hTUslmdUvR
pBPBUTrX58Se7qYQBr0CKh1XogqejHKRxGMAF0lPqSzrSt8eB3MAqVdfxHbOueBmcPVQod8HOuyJ
a47y8pWg50mRSWy/jv3QJo6Bhlo6kKxbm0K+Q65BEn3WWK24nrZDkATgn9OM3k+l2jdrHofIOa8m
uuDjte/YbDhBt61TLK3Tcyz62bKAZq9d6N6sWjGKLWog3Tw8ssGfqRRSYzrQpHaPF33h9lOUrC1I
lV2MV0vVQWOidAnk++r4nc+39KXQyVgdVrsRi6jHJo93nxzdPuqJeMyfUJ9cPEXz/Y5T6fXRBW+d
lKLrpw6Zvc4Vfzq6mgLj0TtiKV5y9JGpASigPGXXbVT67IuPaFk4QGxzJ8zm7mcOrIPsRHzaaT3b
ausKakMKSeDUpsk55xjpEL0YvuuBP7oxPkEgWMqM7B71/JDrGlAlNontuTOzlmL5jprqzllALd3n
ct9VSDmoG+K8zYX4zisN1Cy08Gptlz0dVjZG9fZ9p8rhnaXcd9oGdqoJOKpxi0Sz6U/o7Tgj247n
tRCkevHVvjAz4t9QZn5O83kDcq1T4rERejoritNv3rKg7Iue2muTwvJRlcS6vpt0GpMiQEVsWszx
kSp4Jo823PqCYW22k1OxStQAvvznh7c9X70tA6TreUfII8BiWvimrX2/j4p3MvS//V1NQkZ4drae
/gjN4oRm/WaOlfxzEJPLFxmM90PDDN0rzUl5UBs1he3iZYEac9JO2qBNWvcmNk3f5TR3vEYly9pj
ru2P4otXCVQ3L2Br3ROCX8OWAxHuhv3mH+/mTQi3C5wZNiI7Zevl5qR1IlcICcW+/OPfF0W0+M3D
sB9n+NhBU1guewT8GHPJ9v7mGWX7K0q/88/7PY/Ogr5E4qAuJVQs3hnuNa9Np0nOdbAZ2tL5bmmX
fD4ec7A29gEv8Cfqp81rJ8GX/xILN0+THubtCWbT5oZnGzymfHV71oBPC5sEzgb1zTPQIrjUZE8X
J05RmbuJBCRz38SMNlY8XU0Zg52Aw9zD2++/+bJAj5QnnuWw9JlC3Br5buRiEe+XSAhVv4CYzx1K
z9ba5IfcUWBeKxbZLTZZyXMOCQqxypmnzOxy4b1ain54ve5no+h3EgKUf446Cc4vz+TeLLRWv/ka
WMY8Fd3z6cF7FT8ZuYSWKbt8lcEiHHbMGXZmOfkBOoASFXfmMHvyGUnNA7B16/zxjfE4mFQVt2DO
tuhjICmRDQOi6DJjulkl5USlRIZne8NMX/hDP+60YECv19rGC/deoNFeOPKPj7BM40XcJ/apRvFS
Db/8pS6nTdonYDxnLdkeCg9NGioV9OuHTa2WPQ8P+wjWmkioom2uMd83uwApFjsQommH8hNtpATt
7Fjgj+ooolXf5wCSs2ezrXDnfocmXqwOyv3XT04s1++dBZm5mtP3Nx69HMQdFNe5kptSEH+M7f6O
tI+bM3OlGr2ojsZ3PlZn5hiD50+nQ3CBbzyqktsNfVr2CbU3hhvx/SQ3+dU5a6jYEI2QT+P0o7na
OCiXPxsKLBT9cBIgI6InwH540If7RkHLy7TEalCx+I8PT6s1ZlZjFuZn2gYVyqXTnViO0iKmzYII
zqP1pCvqjj0PjWEGxWanMVzyMh1fIZ9WX35B4fzyfGEp5R2S+x5hjY3ZT694UIrJIetQjeJfvwBs
bYUqX3wRCc6z1U//rZg89NPdNi8/fY1XloF7yhxbAgrUITheV+JjO5vptx8Y7fk65k+00+B4aQ7s
obyZ4FKHclh1QUk2J+/lc6zEF8CH+4O5M0pLrqZZgi6rgLL1++ijyTVaGXVnHrAdgo0pT+4wA+bc
JRK0eRbz98zzIBben15N+2MQR4D6Q0AIxVM6abswXD1Pmown3TPNKX2AjkJBL3SxTu1eqp63CAW4
6oj3duSS//bDrJSS6VWG/U/vlw6Y0cnH2lHgdLo/Ew+V86PBgtvx2U/vg45huV/5mOt9YHLpebVh
vJ8a2odt6AuLrQ14hdaWWa9PLuihSipgKFj99GT/ua6PkqZH2pOYt+4Yj2UfZvDDdyLvccn3947D
9qYYLLLzyuTv4SbDrASPjk2FEH9fwxm0VvNkpj/U6If/mnWMNt96LfpGttUEFlctp/IZxpLXhXUA
x5Ue33l7MQVKPAc5x5fPfvxdrvm7gO9+k7VIrZTr60uNum2VUh5vN/0k6WqFiPsiX76clNPpxQc4
PjKdXdJ7hSZ0fk4ocU9AnKuv+4tio2D4nMs5c7dRaTL/qRvIkNUGI+VG0+7H75sLtehyXPXlp82a
BO58sSfOZNz8YfvsMagJqTHNT5+UX8PnBD9+pmtJFvf7VyahOJrtsTw4BloqhX1HWjnfEWOXMX/M
gnsCX/+IasrtYU7ttGlgqtfjL9/9x43xAYZTU7Kv/hDjDF0oXLru9NdvvKuu+Y+/k2C/mBB7xsMJ
9OPeYU6RMCEW552C5KBrqRffduZYXisP7HabMnd+UNLpGjgWvDeTRwL5Y5vDEGchLOCuMG9QsDkA
m1/QkfsDXbV534t3+7pD9D6u2Pa1jP9Hb9QZPuDlE+98QeZSDvhKPkzPrqMQfNlF6LxYMuZ88VDQ
yNNhjDdLFkRg+eIZDweNbtGTbc+QI36e2Qc4MPvOPHcb+NMm0mcA1rAnxPqo/qTmRw/9/ITO/SzQ
Tx/B9AxLcmhaH02L+3YGb6+8fJ+nC36Weg1to3bP1oEs+2MuMq5JtymiM+rm6FPLex0S4xky/2F8
0sm98fqnn7/8c5l2yoNaMFzXHilEfvwffyzUcovcs3hvchs8DV00aUsSP+Gij9YJRbFbBVSuep72
B368wI8v59v1zhySRIQwQzGnizFa+4vyOnhgyKhhehe80in6bAA6fNnS8aFc0ym1XhGogRWTC7kM
MbtdWwMyEnD244PTOI8vUJqXmm3168mf7tBocD62M7o8LUg/vspFgx5datMfX2X3Ust/9UPHQJbN
tq4qClE/GlRdvW+pOL47A+0qe0V++eFVt6RwPeCATnFQx+N3/eo3762vvuaZrFrQ6iTDf/3RpOoB
0s7Wab59n9BnkbJaVbPIIkYc2LEMTxShU/t5ks2s+vhjX48afPTgyswAyYjOZ7mDvn4lwwzNfCqx
HYZpWNzI1twVMecPUwO6KTRGGPrE4jO0w49Pke03/vQIMw2drGpk7pgVPd8f9RN0iSOY7ye6/40f
AjtZO/Llr6VYVXH3x//I2Y36Xz5/eoJ5dRGgaW1fD3AICpvOonwVT28j1dA8ty9El5VtL5NV5sFW
t1Wih1IupmY81T88w5onbf3BHL0DHPtgYLuSH/zqYE0e+vpFXz5Zx+we2RisbYbITz+Ir/5AyaRN
ON3zZywqPzfQY0wqEmhEQ8Pwcioog0pl/un6Tif3WFOQ8lP/6xdzgPhiI37Vtz/9mLKnt9aQmuxq
sn3ib//3lz9+gKftsCxZpaJOY9J1z0i424rRwN4ddt6gkEA132nxq0f5+Wrx8l1Rf7itvQYupdwx
LE81God3M4P9RHZ0nsV6/Ocv4+vu8/1e6cfvbGjPgcrsdzVDo24qoP3wuX2dPF9a+52N7tq6Ip5y
m/vVhFwKlq/pf/NN+fql6sa7LIgZXtx0nHdpBjw/UvriPhNCvA8WOlGnZvhUXsvx8WgkYN4yxXLV
h6mcPiQDFdvwgmUcaGm7TVoPUmguxPa6V8l+9XP5GCtiLY3WH9WbxFUd7zsW5PugHNytmcNKVA3Z
5k0Z8/dwlP78tuLrv32/ZwZVsQkI+fqZP78N+aBHNJ1reckrfElQy6sZ2/BRLUUqOYMmN9cjSTKX
9IOV7yzEPqnAkk5MwVeKcoBjYVzJdp1vY7HV1jUQS15TrmIHjaA9O/SiuyuV60sff+d1jfJ9fWTf
fjK5fd5ThA4nhqXpapoc1v0Eic9Kym+5aXIn/MxQupCHr94cfP646fefn80852nEbFXFDexjzWXm
9a2afFmRCdZiRb98JYobtZrJ8MVPghf9oqfVR5FhtXl/6LSZZ6WUujMDYoPnf/jfkWJ3AbbuHZxo
/bOkX38ZHdlcY/6eqILdSv+OLitMf/rNH8twTbWHED4h3fgQ0yBKDl9/EXdszMpvfAk0DTpiRd4C
iQTAgijUz+RUz44+Q4tQgefbfpNNQ1exuJdTAV9+y8xl+YyHZD5k0C3UB0a98xJ0be8PsB5fW/Kb
Z+J9aiqgc5vh5XXUyrEoHgVaPY3wp7dNNsaNB996xTN2lFJ5eZ8bcAfL+Os/KXHtGTw29+0Pr1L6
6PsGSubvmX+wi58/X6CPexnYtdQdxJfJ66R965U2eCrKkZyMCuLjSWE7G9187qc0h68fTHS68GPa
jPcazZJ6w3aqo6Cpfm8sTdRvi/lfPivdDiSHarVcYh6EN5MqGsiwTZfVn1+1fFmbAFbB9YrRDWU+
//XfqWVP4rnbwR+V225ALa9n9J0oPWptZzdB3s2uX/63SMdMvd7BuNQV2bh3Q0wnr51Bc7tFLNNI
gsao+9TwAW/x9Q+dWGL3TEYPMfpUgxx9z0cuCbqlpxnBIc3/3g8pBDYs6N6f8usva0jeSCvmhy33
RbrdNeiLv8RoPQm1Z51O6NufZCc9IsS110uBxzMQFB2jk8kPOKshxe2N/c5zpikmCbB+HVDRepXP
50F1AqLORmbv9FrwctceID02iKwX46vkbhGF8MVbts7mnfh8z+cgvj99Ylb6qR89L5r9+UvdTe76
uzGT77DQ7D0tNtdJDNaoJsjn45O5+afy5UV9lcDt1OF7XiDFbdG1F+Tr1zn5nRcxR+MdcuUDYVtT
BKaQzP0MvvwfS7V6SOn74GD01ePMzO5PNElsF8CGHSVCcqhj4YmjBI/GeOBxo/nmGE76ZfXFVyxM
M0fjN39o9dRD5r2dU9//+PS4PfsM2yiIR+/1pKvepC2Vd3VY8vBwDcH+FDlzv/VJ54OQUDjfR3Q4
KswcG29nwPV2ebAw9Z7ix79hu4y2hLinh8kf65EiuNtHtqW5aopLPgt/+vDHJ8w/vt7OghPz6/cs
pXrvFZDLbEMs36clLZywBksjFsN41pQjAxNgdRzvLPjqcfb1Y+GBu4SCHa4Rjx9XCa2ViyA/P2Dq
sVmsxnS2Jp7tP83JfkkKIsZYEvs1Pctvvk+wLZYGfr8r7I+owSEsQvp/AAAA//+knUuvo8CWpef1
K0p3Sl+BMRBBzXiblwlexrbUagG2MWCMDUQAIdV/L+Fzu9WDGnUPM5XHacdjr7W+vc05bvnQoLVf
kRgGE98gtSO1TodwEH79loDlIzwQQzMZ6MYWQObLt4cd+hxKuPGqgNNqu1k+ZX/5+deNJ8ZgZeTF
ggoz+MgGa5qs4Nv1UhEdeeLIatLMt/RQAVnhHsRP6omOm178rb87A7eg9F0a8MK+Tr9+VrPxuC+g
9iIht+lU8Oe//MjTcV/nCNChvgRQWtYz8iT3k9DDMaggI2cBOroXNMzNmldQXnwVuRuPw84s32EE
iip4qnsMSEy6TNzuz18/e7deBAlufPovfwxRIV1++oC0a/0eZrUTOHnTX/zjJ3P6aVLIFo/nrx+l
r+GYCbDqmhRzcK0GutzcDgrXzEWaz7+K5YpD4c+f60WaevO9+0rQdvgHOTCfI6XaHuZAdpU1kJru
SalWTr10IrKE9Hv40CcaZRbMwtONmE9nTGYvNgwoH74exiGuvOVUf0LAdNkS3HZd6/3dr19/Wbt7
07CdHx6GUBiwuPWrh9uBG+EusbgfH2qWa9m24OevVI1R9DkU3fKXN4hXrQZdZkg1+I/fVMB//o//
h4mC3X8/UZCb8xuDg1Z7i/FNcnDJ05DEl88DtEl5DAFP3BdBUDkUPNMLGtCjyCBIwsUw1YpayqLs
35D/xYU3Fw6PocMyLmYXbZcsVdz38CCOLDpIqgSW82QzMOXbOHDNE6NPy1r2EE2WTrRAFovv9XVp
AXjVJgmWMB4WqoBMir+DgrxFQWB2udCS+cCKie6rb7DocO2gpxlLsPIvfaCHXOphjl8lFotzmEzD
m+kArx414tyKAx2PKMLAvT8s5Nz5T7FkvmcDPAshSYfkBbDLVqEsntWSBPv0A+ZJcVJQCGwVMMn4
aMY13jrwkbuioANZQiON8GDu+oqYQthvHa+ZAxJcxq0DK1Is7twMPm1vR47zaHhTx2QpvEWJjacB
sMnk1XEon58vIaBpPDbDIKc+PBFJI2p1VLy+S6ccik8+whx2Pjqhu8KAzxh+SRFVafKZizGEX20N
kB6Vn6Q/3W0In/13Rgcy3pvefPYxlApyRWp4q5N5+lwEAKUlRz4r5gUFhpaLMtdaxBlEkS4XsRGg
qXIOuZxvDMCvl8jBj1TNRHs1eTGTJu2hDeIjscE+pYvyFBWorEcdqeYjLGj4eUrQn40HigZf1FeW
rXL5GRZJIGvk1swhz/uw8XYfou+d1RuFz+pC81wh5PBmpU9fowkhuxsbPOforM8jc2yBmUKBmNWl
aLC9qF+wLG8Y7EWhpd9F1kuYchpAPjjghgxyGYD29D0hRN50mIXTI5SKJskxdy7EYh4fegmhnC3I
kY1rMWecmMHP9X7DcwnbZLlbjwpEw+Cgg69PxSI7XQbtc98Qx7BFsJ79sYL3j8kRtcp4b4zB4QKp
vQ//zjtFJ6TBu60+MRzXeJiNR9uBkx9e0CVJezDj68GHka0/kHmrLwn5nZ/00mOihZfCm93TewUf
qZ6Rn/vRML8/dggvjWMFPCNMdEbOrYTfthAxjFttIPZLMaA10pZs+1sQJ64EmcPvCpl42jfkbvqr
tD9JbMBcurxY2+gOAR8YMbF0gae0wS2EjBv7yBnEKxjdr/Zl2/D5RhqnvIr5ol8UWBqnCTk1yybE
aowcHIpAD4ThNBTz13AEUFOFI9bhTOhU3FcI22O+D+Zxd/EW5Tx0gKWOjxRt7xZLf3bvQIZpj4L5
boGZ8n4JtSpY0MFhT5SeEs0G47s+4Tb+HIdBueAMTl3tE8VvZoBhx2Uwk0ILIatY6Fzcrx343u0c
JXCsB3IsvBj2p7OAkAgRXSfuach8HZ0wL3D8MNKBVSDzYGJiAF0fZku49OBVaVfkOcKrIBYhGeDr
5ET8a1NQWtz6AB7v7xyHwOX0+RuOPOiydSUuI9GEfvSwlo9t9CQBP6T6EA7sRRQMiUfGbhG8/jNd
75BQhSdqDbhiHN63ACZP6UQMTSS0dxyfl+g19YJhWYtmjo74C7nwI+Oeu5Q6zfhb+fv8SOvD9zAX
FbHAUUdBwOAcFaP5rGLojEAgSq/7xXB7ihcI59uTuI9IBfz7sWvhVwn2yBDuZjKHXmTDKqtclEi9
p+NDqHPwzfMwqGH01ee7ydjSwAQtss+3O13mYoyhLzcHvKuQ2czKJLXA8kgUsFfKDP3z/vVhdHSP
xDVPd52O99iQ2ws1iNFoqrd2t8qCuDsUAWaoBgaRXWyoECMhl/IsNuR8LlKw8OMXbevnUb5ke+Bb
MyYmSyq6LGv6hV3wTJF+NS4JbpFzB/ldMZC2P5NibsPUly7Vm2BsGyFYgZhUsDiLR2KkfKHPte8p
QIJBitRJtAp8+lxteJWfTgBzRi7mcucwcN/wDXJ72S4W88wFcACf47Z+TzqpKOKk7f2TIIju+oSf
fSWJpe2iQ/XK6FIMJwEIO9lB6HKRvWUu2hiCQ/ckh+e+Lqh1YRhw6+QAGeP+1sw1W2mymx0/SO3y
YzKLrqCBs9K8Avo83bw1BXMG3W5syXl5V/pSK879r9578rUpeofZZ8A1+wgpzfpOcNT4MShAvQ8q
Ix51XLtCCNshK5DW+bO3rAzbgXtzxUh7ZCNdFlgbUrVTLaS8jo636AfbgE1qHvAs79WEDjRYAXO7
AGSC9+qN54uBIZOYGrJ33/fQCalfg1fa+6gYg1anF+FqQ21dbeRd2KkY9/CawmoMQoKi+kqXWlHv
8hkx/qY/WrL7CHYIDzDOyMEfdW8dkyaGl0o7ByxUDsme6B8XViFvIGQ8PgmdKtIBGDGv4P2NZH10
udCAKE4QQld1BfMBqZY0sSeVBItoJ9xdTGzgBDkkSvy2vYlIXS5SokRE51pK1zEZYlBH8EkO2+th
3WEgnFPTQaoEeTr9/ERo38NAkMGYLEdz+oLnbQ+QKQ+fYUkPIoSlcZ4IUpW5WLT1ZcM+Lzuy/Tzo
Nj0CyDgNyJiPSjO34jCLW31Exxde9aWZvj7c/Aa68qai02NQpTDqqxw5Zv4qcGonKYjCUMaiAJpi
+/cBDEL7g+XdHdEuj8VcOuydHh1Lbt+s+Azv4Mh+JqRZIzfMb3b+gm/HhpiZ7xYlo7MPpMMxfuDq
dfx48/y6pHBq4C6YPxmrTxN/8wUAfI+cqfYc8CnuZ3Gv+GIweZXmrf1zCaH57RnkcY8efNpCV+T4
XEVI+fZus/jte4WV3XXE5T/BMN7G2ZeesxQQRQ6GYYWLukIB+QTpdh2Atbv1FrAShhDHzM1iP6bG
F+78xkABQzU6Zt5nhb0g10QtklfxaUO5A0u/WMRT56whH/1SQS/PAmTi9jnQ93fM4fiuTsRdto6A
uGtG+acHZsJHYH2eHhVk59eOHFQc6b10PNYwL8qJbPU+WV9Fe5HCjvWDERzw8OdvqkU4E2eYG7p+
i50CWh73wXuZM2/tkriXx9K2ydVsimI5uagEMsx6/CoYpeEn1TDgcxYConyyh9czXOjLonU3UGBP
1rCH+TpDtxAJ0phjPMyjXRgw9qcSedt9mltdjEEc8R4Wdt9Ds9PWyYYdeb/xaQIeXdP36Q5l9nYm
3jNcdYozO4Uqd/qgo6I6ydL7OwW6yrNBSC56unDHewjZL8D4uXueEvz+ehoEpu4iG1Yu2PTNB1a2
TWR1a5WsN8HO4ftp88TVpTKZO1u7Q7fIzrhxO8vjPo2vwddX/JLNP2/1x4jhazc+iCtMnUfdHQyg
Yp0BUpv2qy87nFrg3YxH9NgLQjE6DJuC8/MtBPMNh/p4D70O7i/3LIBfDLx1Z04SYL9ZhhR5/0zm
8eHd4R5aCrEHRtXnY+daYk01jrjedZdMa5LX8GHdlUAKkDBgJz0p8MYGA147P/Socuky+Ii4Y9AW
Te+tl6APpEI7HogOIoXuAjnh4ZEdpoAx902yfnAZQOPoegR98i5ZTfUVgDvj18iZVZtSZXJ84HUR
xZ/XOA6Td/E5SINnRrToaw17Gwh3CK/TgTj3I20ovtw4eFKZBwmIbuqTeYYBsImkBLvL7A+jjwse
qLyokD9/vvlFOEqDQVTw8geumWwelvp6wlh87pP101orHOezh/fn2vK4g4RtwD6aJ2auggmWyRVc
GH8/CinLK+sRlWSjlO6dL2Y659ssVKF//gapPFUAlkahhcvygsQKJaXgitR34aieUnKc9SChlK0q
ORWJin73cdr8nAS6ww1/L21K5zHlNci+UE+Q2yjDqqd+/ltvFD9YreFxrW55gneCEcxtsnjeRxAq
S0fIvfJVMXfumYFb/SKmfxb1b24PEMhmh4gNgoe36aMCjSNpAmksn8Vkz1Uob36BKHqleOvz0TJw
CBMVBVfBpD3rKb2ct1GDjIbzwbLpNdSm4Uq816UCn+kjxWBsGQYpEbMmtAUHAQra+YEZ8bkvVpme
YxgUuoRMmXsMuH8uMZhXbQpgQ55gvs7CCtWeLYl5XKWB5msqQRo0WbBH+bmY5teCoasbElL14kLX
2bzFYN3hJ/KkpvLmToYQLpyTED3PdMo1JEvhc/APeN/zxbDcRa6Cd7cVAj44Jt6aQxvCOGUkpORo
r+MUCBl0DFMP2mPg68vrFd5l5JRXUjiCmeyVGsww7g+fYHeKkmFV6vgCw/V8JQ6TGXRX+skK7lT6
EHcs1eTzWL4rTIL4S1x8ccB87DRLHqWPgfzGGvVxJ9guDIy5JCfcqgNl/XH9+7zz6TYkJId1Kgvq
esDyRghng08hFNVTho7HiQy05DsLFmdwxHNypfSX1+XqbdbESOKm+E4800ntkBbofB5KfWgEKf/5
FaLqcQ1oqdAWqu69whDWc7LGU4Rl/xV9yTF+gGJMIpYHc8jkmPt+Q2/Toxnui5eJHDu0B+5a3gRB
xYZL9K/1bJb9QfEh68Q6lnE/NlNweKZy+bCfJLZGrlmzHbTAVk+Q96VawbknMoOC+XREu8anYQrk
ggNOrbwxl06mRzNXyOF8LzS8VBmvz19DFSBP7Bex0Y6A6XT/ZvCrnzq8FnsKlscNbRMgRxn9ziP9
+WG0zi46jCdumLd6KMQopoF4cnX9l0/g7VO//vzkuOV54Fh9jkx+1xULQN8O8ul5Iao3yg3Z2y4D
P/p8RofWQGDjJyn85cnj7k7oegzLEoq6NCH3YzHF8n6UARTLqQ6Y9qjpy6eZcrj5U+K89Aysby4s
f34YS0oTF/Maiy4krGBt9yculooxR8hz/EjM8PGmI74iH54HsGDZoCd9Eb3rBXBYs/Hc62NCRT91
5e8ymyTVDq0+Uc+ewVi6drA+WG3gtW7oYO2HOUn2zqqvQ3+G0P/mF3SA2Na5C95Z8Ml3Kf6KjwjQ
dDVCoHQ8/5eXl2AWBAgP3kxM4XrXx0lRUzkKYzngLzUqRjrsFbDxImIOe64guB5CyWOaEEvo2XpL
xlau9KvvUieGlHay3oFy9nfEtQdV53f65SJu9YOovDvovXJ9YGmfnHpi2kHj0SLJt6mPl0BczggL
/OMfm78jrslQMO3XVwi2vB5s61HQi9T10uV2Z1HwrDi6zl1iwW29gt1J+iR0vdcY6Nf6GfCRzhe0
vxx9sEvXGm/nw1vPU53CxgsjvN/82xLuNAMe9WOAVKzBZIxqpwI//97v1AWQa3Q2JJrNHEqy/Zd2
1uXWgWaPF+Te2CzZ/JkBW86LcD/OR4/GRlPBLZ+S48uEyVj7ugLlVSPEpNmx2P/y+XL6nv/81FfM
bB9ejeMVs5s/X+3F+QJHCg102/wvtsQih2Wu02DH3HbJ4hwu44+HBdyI38OMnNNdsBtlJsFp3nsz
MeL6x7fw4SIf6Er3Bx926bFAfgR8MIfVkZMMJQZ47RgAlmfKuEBq4B6ZidF5RGRFG1rrbUD6Yuag
e6y+C0upwsH6fi8NFdJJ+N0vdAj6oaGdg1u4dEeC3LND9dFVgAF++qjdgJfs+bdpwWbn5UiXes/b
qejKSdBQ1WDYeBwVtWCUfv6ZNR6f4ovi0JWztlPIwQNMQjrZ6+AhO5zI0Qc63bPaIwUvYR9g+Vvd
6CrcIwYOF73B/Za3vtT72rAHlYici2IV+0aQLtA5oxWZU5x5i+zgDF6DZ0z0Bc/DpsfKj/8Rq3KZ
ZHos3xls+0l82ev05VePri1Og9flwINVzOwAft4XFWWv1wNQLrsw8LNnr3g90bKZts8H3fvNCiiI
Krq+ivEi2Spz217P0kkSzAx44pRHzq140/bH8+YQ5sSKxlFfh3XKAX+9P1AQ2LY3O47BQe0tJ8H7
ua+T6fWeGLhPzj1m22Ue8OmhY/hwui0fNEVCM/50h+8GHzHdHT/DGshyAL3XWCD9sbwK6kvHHCof
+UXQExwT/ObCO5i7b4WMdDL1fgCzAUJTEJFzghjQvEcllCw9wXDz+3i8CRhufID48XRp/vLKxm83
3urosziir2RQ6UWCjbfwBLccZB4wxoBl1GEfaW9ekDShRRezr4fxteQaBIA2m16FBfiMvQGbMWs3
/Vc8TnRnRU5IKhN/0zPKh+UIkp1uEP384RuSKTUDURwhYt07a9i3qOZhfK4jos7EaZad8Kwl9fhC
RFtcTZ9d7mLBSX9I6HBw1gG3UcaIeia7+KI5TkOfN4GDws1NMHfcq3Tn450P2TvjbLxoLOiT+wQ/
/UJWtx+K9XbWOuh/L5dNT2d9Xe9qCidIv8Ey7DCdtVfF/fINKtS3MtBqnSoQDNUOGUMJKD3ZcIRJ
Vtubv6wAac1TDnfx0dv4sVSMVyRByBreCdOQJsMCr4ICA/PEBeB1qegcC6IEK7j0yH8LezCLSt1B
Uu44otRVAaZcli1YsRlLtCJgvAUIqw11R+8wU3BBMh+KVoFvMU+IqkxGQw8it8KPbB2Q/eNpZBTw
rz5iSZdgMneU1ACW8X3LF0995xy2iTeQN8SAb5D06CakMK0kP4C0Pw0Lk4AZQInmBKmfTqeRL8fQ
uS4OOagmKNYd3pVQi6NjQDY+NsEuZqTp0wNk4UdeUKnxaxAwho8CGBgDvzMnAXZEQeiC/FyfDK7n
4XdZTYSe8bmZ7TW9QG0yVHJuJ7P5DnDl5GY/Ln9+4SMfQg4SPy7xfnlX3tIaeQ+FKtJxc52wvvYK
uANpf+gCkOcY4Dc/QbBz2In4L1cfxPklYnjatQ7a/LS+W9by+6tPwS7TH8VPzwFkBZvcderR3Xb+
ZLJrj6T4PDMwHqKsg0GfW8hDJaTjnul4OHtxQrQHWw/Lr78h7FgnoFt9Gq7R2YLoW42YIbuZkuis
YbjznwYxZ1tMVuxdK7itD/7V53HTA+nSeBY6pOnq0dqLvlBmH+dgtQ98gdcq4yH5+gpKj/vnr/5v
34YA2i+vgR//goeBFkHNHNeh5YuiAlmQM8hJiJrsclk2pGg5h0TDt5RSIX1JsLi9E+KxJ4/ylQ07
ENxeEXEJHZI5mXsX2jmNf/wZUC2vNXi9ggfmpHyi6yGPQmDnSxxk523i+G64mqQynxpLbPPxJu9i
cJA4k4nJVY3B+lrTWf71U/T13CV/vPV9bLzgV39WFF9ceAIhQm7yzT0qM5YFh7zbJloqLqGvlbch
O2u3QJDKJJmSUB9/55X47fNI5yO6jqDTex15rXUqqJl9SmD7Oxyctv7DmuRSDXkVaeR4YtJklrCX
AZsIyh9/2Zeeo8D3XbOI0jjRsCLbHSXLmyLiBlbdjJzPCQCfap0c4kM7kJzZ89A+fxukXT4smD8E
MzCeKNl4X+N9Hrl0gRo9VcE+ugd0fXOXEkhdHeAiParDuPUT4OdhN+QYZK9ina+CC7/tVSROXyNK
l467w2UQdwQ50pdSLgsZKNzshBy2fhBm3AMGLX64eL7h2Rs/07WEP3060lxIcPD2ebic+jO5eVWt
j+X+XAJLmmxiP1egf/CzqqVffrXYZ9OsE/ex4PyhKJBnHSczfIktDJrkQg7O8estv/y08XOkuFmT
TKH6siB8HVJi1FcvoXQ49jBaTiFm3aYaplRuN/1RE7znbk1BWMXhAR4CB5m7RgIrq+6YHw/69WP1
1R2OFxA6ar/V93hYJ9W3QIT9iriS/R5Wc38e4c6Rp2DekXggP79WRdcSHc61pXPuY+fDV7B9YyAf
Tx49WI8VsI/nM/jiy4eOiqAocOuPIlO4MjopHrsRKp/Lkfi9YoH25HQWDNyyRreJzehKBCkEF+Pr
4n3Qew0ufdkFHrg80dGram+9kD0PB0PiiL/T9wkeOu0O4oOaoQOKnsVfP/mnz0rjLA2W6TmE63uW
if3zm+hR3qFnHiu09dvoUtw3vXivLIZnttXno8SvkHwDZfNvUTNvegs4rNjEP7OtN71elxJcNIuS
wDZmSky/1OB2vojG4+svX7WwPn/fwdKyA1i4czPKo7xQpAlr5I3ieOjBxscxFqwd/fW3YLXTLUyv
xqWYtvv86xejM9XUYdn8EeiF3CVeenw2mM+VFdZ+nOOm53h9TspjDKt7OCLDfd5/+bcFQt7BYIen
80CPrxBDD+TPzV+XCbGmiPv5dSyNpVrwnu+FYMtzWNr4KgcMsMIfH1MnsSvW6xsbQHXLiiDp9Wow
P4s23PgnOey9fTPXqtzBIh41klmvVt/yTAu3fiDm2ac+4OdnzeX/j4kC/r+fKOgDF5PDrjc9vnyw
LpBpeyB3ItqAvnBhwE7zDOLD0gP74uy4UGbRnrgRu29oGpxmKL9bO3h53gzG4ugw8NRJKp7f55bS
nClHwJO3FyxZdB1W/WvnULmWHTJv3kQnB3wt0NrZndhe/wTTp55HqCeRRuy6zgvyZmIeAtBdkIHw
qOOjPfEQYUHCfVuLYH5xCQPFR7uiQ9u/C/K4JxDka6MQqzEfzWJ53wqMd9vCTxJl+hCcPQ0EJytE
x7w8FPTOlBbY3g/JIq8riEOEFM63JUT21xyKtRSGGqQcUYPrZKoexfdohsfFSpFT1BEYUXqO4Utz
AmKU3r4hi9muoFLOBjIr79gsj6+J4UM4WSgIxGkYJw/HEvVeE17Us9LwV5Zt4TEDEX5PvVXQ+17p
ZVe2ZuIZLAGr/UxsQBBsA0mpfQ8H/dRDWcxZony5uJiD03yXqrh2kGl4UbIwkmNAtDNUVAD2Dej+
1EhwWRYdGQH2ALnhNIX2OY6Q67AXsERDNUPtWsYBlEWRrtd+tCSlSQrivNl7QW4HZYX2V2Sx2Jq1
t66XKgTezRiweKrXZpy8LgRVe1bQYegtQF9M4oJzOvborPU+XfPnJZOF42ripeU+3gQl5wJU9f4g
RuKJw3cQPhmcXtsEBinPlOyDSwkz64nJkSsbfb4YJwYE/cQQY+el3sCU/AVe4wYFUl+blP/0z1a+
fesWGVfsFuR2L2P4dD2KvJL1vfWyXDDoapclfl4uxTIujxDYT9NCuhv1Hq2DooPdgYUBcFhMp6Ge
LzD3T0zAl33cTOca1NK0Z5ZgvLF1schLOsN1eK/BNJZtgcW9FUv8Z03wcuO+DaWnsQbgWFyDpYvO
+igWbQmv38ZH7oM9DTOS9RE+7Qyiw7H3Eiqemg6eBCwQfxVBMdfDG8LTvdkhxGejtzpLLsDP3W6J
M9WYrt6St1DeXRgsh+LeI/KpZuAFjgU5e6aYjJ2shPI+mn0U7aMU0Ns9DWGaPWVkml40LC/XgFC/
3R2iJZyW8B3Z9XCP3lawPiI8rCJaMYtyiSFGj9/DOj5gD+s5G4KyFmU6GzezBF/GPqHDoR/Aqi8J
Dy7CmBOtjY507Ymcga1jHbBDNg0zKbAG2AK9kf9inx41D0YFAg146PDtu2b43vMLALsixvzOLIcp
XyUI/C84B8zWIaQWfqywk1wYjN8Sg8kbPhgeznER8LrX65Oq8Rz81PYThbvoXuBMaO/QUEsVFZB9
6zM66pw87eFCAi27DbN/mmeYzMQlx05MwAqJ5MMaZh+ErttAcHJpGYAkSSQq5Q5FS9MrA40h3GHe
8t6UamdDAokkRcjemx99OQzfDA5v2SQHbHL6CNtLCeC7i4Pdtt5vj8yanHPnPR4G9pusD5b5wnKt
Ryx866u+vtGulgDbXtFhMRM6lbkVQ+QYB6JOnK2v58uYgi5zFOQpde3Nk9fFYPdZbxgu5TFZEq/v
QbF9Z9Z9s2mx3h8MBy4pvhOXY9dinVh4F7+5e0V6HFlgZYgoQPV6L5F96hVvESRXg4NlJ4F4NDv9
dz6AdY5fyA3qr07rF7Hgh3EfxBS8Dx1EJlRk+Y2kQJTr8e+8QduLY6KNkd9MJqhH2flYzF/9Xq2o
uEiFW8nB7uIFYKnzYwoffIXIXRFRQ8/4FkvHyLii5Bi9Aa3edgyGico4feM+WQVWkn76ghytPiXr
9/KpoZZEfrC/mvuBktNkg7PVtH/1aTFW/gJRLjDEbLxJn92TaIhFibWgxdgCVH0sFaxWhyfHi7gD
9HRwNcl+mQcs/uqdsBswWBuok6AS3WG/TUgAAbWQbHqQLNlKW1jxlYmsTz8X43EntPAW1F+k3rjv
MH8HjMFBNU9EO0cILFfJGuE4LRRZh35H59ek1DJN3gMW6loqhvKtSLK1jytk8t63mA8v8Q6Gux2S
uy4SfYFfNZOvFU6Iy9R1Q98mTgHQ2wppAAsN/tUD0SnGAI4i9PCjb2y433dsQI94N6xmbmtQed5b
pFEsUkqDqyEtyZtFflquHj0cfB9q4v2In/sopXPInQ2gsyEI5FmMvbVQLz6Ajy5FWorv+rhwsSW1
rndCqBWVZh+eXSywLGqQl7LHor3IbgmfZSqQq2G+9bXpv/Xf/hmpJ9CFk7QeEsS02/oQsAz1nEN9
iNngd79WQ1Jc+OIdE+mvyNDJVk/hy05TFCgiGqjNChe4W9YC+VZJwSwbYQqtq1mioyvum9WN4hlq
YnkkKhslzfKRfB8ah1BEASt2yXpU4xxcyzEjwV58/85fCPb7lkXp4O0Ajpaoh8+8VpGzne9l77qu
dM/qO9KNqKdDzNwg3O3mMpBUNveI+/ZGqcpqFwu0Fjy8e4Ac6o9IQc7Cls3s7QQJMqeLiLxHKSX0
ebBt6JtWi5TLuWvo+X7yoYNiJ7AWTy3G5001oPkyX0F1Pr8Tst0HKH2KG6YuPoElLfocRj2pgqFm
vWLByx2CZJyOCLH0Aqaw+Ggw7qTH33pPnHq3QTpOOtEzzA1LlB846JkGJorEEYqls+XC/II9criY
52JthLoDb+xS5J5ZHmC771pYwUzG/Wq63oh2c/g7b3gP+jbBWz0DK4AKSbb3R+6vN4ZvVv4S6+EZ
BX3iAsOv5pbBuuLr8Ht92L/Zhmhi9C3oFZdQclfwwQJrHgDGds/D9C4dg2XbP2qwiwLTTvKIrfU1
mPXXakBvMXriN+xzoJfgZksBFg2ikHMz4KP94mTpc70hRGhRYNJXvXxA8S2gEw6HRS2aQO4erIj3
U98lo8BFLjwr40hMxvt4lJYslD652wRzeH7TRXadAHa5owa77X6uO0RT+bFWASl/52/bL6DSKEIW
8Z6UZm+Vg5E/dWjzLx4tg7KCmDIdOnimWCyJV/XwUZ0dhEDm6fh0GXs4SNszVNayaWa5aDh46gQV
2aDm6bogCsFVGMNNbz26vF3jK21+jajKuUqWNj9qUB2SJOColzbrB8nBT39JYGSyvuyeJwj1d8yQ
Q2hehvnc3i0xZSQ7EESzHz46GBRArvSK+ajnvPHJpR3km/eRBJk4/ukvOFlPASecdwNLF4sxHDo7
IEbt8eDbsIwGts+Lg0780Cka+hW2mZMSJTu/dUrLPSPKx8JE+vbzs3GSFJB3jYrMM67AR1JvASQv
egmgwZqAg214h68wiwOYl1GxiMsph97L+BCvYb1m3b+tCmrPMiT2WF+a1e5xB3S19FBgiRiMDGh6
eKxBGOz4/uItpsb7wH4erEC61v0w//Y7TkkerBlX68v81X2YMxWDrI9XNwuU1Bz+9I3m0auhMuRr
uHrvPRYJK+uEliwDvBU88J72ZkPve7uHVVD75BiX9rCIuSoAz7EIUVfuoPN2j9ufv8JMJbrN2KdJ
BTXznhEX16ZHb2ebg4p4f+JnH/HNGqnXFWpqeSJ5xJ6HPSx5DP2d9cAwYQ19l2vUAs4qUiy9a2vg
/JvvQ+zBidhDLRZUfRuMHOYCRy6WGRazYS4QFuOJ/Onh2tp1Lpfj+YXchY0HfFiKAKQ2OWCeeCrg
ZvDiIRetXwxXsUjWcxQK8uaPkcFjc6DuWf+C7fWRW7KZN3FR5sPUkrZnoPRZM7JFU8NvwiY/v0H3
0d6toHkz3xhWbK3PUZrBv3yQrN69oM5BF8C3ts/E35djMxk1kwHOezVEn/FcrGc15CCcri5RLO5c
jJALK7mJnRtClmjQtbt8XZileEV+Kj4A1R+LL/86Jr/8icP+lcGSrybigpItsOHaIRhYWUPGBx/A
wrq2AEePVYOBY/tilZFkgJ8fSxV8BLOchjk8VeM2Yec5BR2DXINBZCFic+ZnoNWL5PCVOW4AX6yq
z7f25MLUn+xf/R/GykhHaL0ORbB/mBmYrzc3hUcsBkSrOCXZO2ROZRPFSwBbUS5G3Ob9330TH+yj
GQacu9L7zU4InbKZ9n1a1PBa4gw5B7MbpkY6urBu05GUGavT3bpkKWxg9gh4pc+K5VqDAPz259CZ
p2S9PPYrPB6NMrgQ81vMVZqu0KDxZg5MpVjSobrLWz1HGe8pxbR3NReW/ulL3L5+0a8vdApcAONu
9/UFyJb/5S7wNMzx+NXQ8TVVoG6zESnBuS9mUzZjGFtCi+y8Bs1aPi8arFxH/tNfku/VEGz+EWlr
5AEyMHEAH+3Z/dOrCaqpAF9plgR7qW+3PHhjICjaG1H5iBvI9ezc4bqsIhZ39bH55Wd4YZoY87xX
FVhgJUF8lpkQ7M5YoePduCkAnSyLmOdeLsjTfIcwtYSQbB2hZqsXAdSSxMf7tTeLv/vHHo4DMntv
LGbGG2YgHYtmu09HfX5PSgAlp6iJlmM5GY8voYKXe3Mmh95M6RoKUw7kR+cGQZMJgG55Taa3dUXu
p7b0Xi4GDm5+HqnKWSn2wj0MgHMzWHJ4mnyygOVkwDiXKhLEWeFRFz9cqcL1AdlbB2uVWKmDC4Ih
UVou2fxSW8OkJ37Aytl3IPNrFICfiQXSPK5pqI2ECg6dG/z847CwucLId+N8Dfa3vgfTtAouTFNi
Eedl1sUccOfLz98SbR+5YD1dxi/wVvER8KHXeX/1RXsnNq5yLqXLvNx7oL3KKKCrxyTj8+YYf/XV
H0WoL8M63+UkJSHxc/GhU+NsdNLPvwRmqQD+oCaZ7N6sHTGe2NH5+4PhgS7fDaRcOa6hyVnLAZGX
E3H5WgdjM9kc+OUHFItNMzZcGUI+WjOiSpxJl6d0LIHzMRjkJSz22jmNY+lwDgvik3KigxmcIfx2
9gVTGCne0n39FeyiucLsg97oyp+DGZhePAf7j7nTl7OEFKDK9wtRPmcjoeZDEMB4ojyWN560OMNX
E6JO+JCfX93qHfO7j3jxosKj5mOWQPv1woBdaA5mR/a/oMO2jMIPt+pL7lo1vAXVF+8P/UBpvndi
cLo/d8SXSj/p67S8AybpNLxTcestKIYY6LsDRyzkWWD3kYxAuq/1JVjjKASrL2BNCjTRQ00adcWM
07yD13ZMUamUaUN3kJ2le1BV6DR5XrLxjRXclHMdzA8uATNTsyFwXwYl3sZHyCE49xAtloLlRuQ8
WuDyC109VIkxYyuh9ttXoPy8arhWonjzC0sMjzvjhC5nE+sr1/eKlNXPHtkf09M5YzpWQH3dC3S8
lW9vjdRohbvT+sQ0id7eWj8YH/zyW2mylk5YyPhw4wnBxs+GgTPHOyjH0ytgInEq1nN0kaQtfwRC
ZGJAD2TuIaoFiJzVrPQ/P07OTI1fnhdSqqKllHfLXCD0Fit9fLQlBze/EpwOuEkG/+3l0sGLy6CO
ormhTMnkcMhdFLzM/lHQh/luhc1fkuAjOsMSFM8UwujqIz8q1+SlagwP958rIHqHYw+f1QsPxaj4
bvyl3vIkaOGKGAv5BmtSLKPVgqPlOshgsTHQhbnG8Jcv/vx7UUsCfOAqQgejH4u1vdR3GNVSTw5N
33urESWjtPEdzC/eM1lOXp/CGnsvvNO9WOfUl5RDwVkN5Hg1V0wnUAUwY5oOBUZZNdMx3h5AOMQs
lhORb8buaF8gwx4nLNXsrsBIjS0oRAVH0CWbm3XoPzGIGKFDYcTtAB4Jh6EE2ppoJBr1FbJSDJ9f
Dwd482fz2OYQni5YDrjay8D8aFMevh8sIVrI1duTiFYMwaO9k2DK9l4zB9EFPO0UIvShpdfujKiD
JglH3JbefiDjPbfA58Deg89oKpR4RNDAxjOQLZp9Qw9734CXvMlwa2N/mHdG1MrBPEHiJ2zrbXwl
g6BpC1Ju/mG6rCCG3P51I4oc3fSfvwbdmFlEBZzl8QCtF0jldQpEvT4NexcJPvzkdoOimBu9v/x/
6p6UOHMdDOB8duYfP0PKnpu92TaX9NdBDOYvtybLJzqvcHlRI9gbvZ9QABke5HA8kEAv1WJXfINM
cBYL4k3Pk5UKlQGbr5MTdePHq/uMOeg4Bx0dYK//iy/yyxoFPOrTZmaNi/L7MxbKGnjjPo1S0VkM
SPyOVQtun16zvzw3HcVzsXJ9pcDltRhYyM0JjN7RvwPbPPjBykVDMo9pLMD9Mh9QNEe7BOP9gf/5
8x8PpL96AeVDd0RHTRQo5vpeg8ieRBRo5dObzePxIm5PZAsEo2boLx8Bi8Q1/t7rd7NIkoPhftk6
iHsWgOESnFyYjSMJ+J0JB+wKOIMnS7AwE4jHYVGHJgSBBHTit6Kc4FRoZ3itxoQYZ+xSzjsadwiP
V4SFvenoxAweDOhYlgsEv74187ctYslpQosUXllSfnxwX6h5SbCtb9Wsk/BRYMelBjlIfeuN8/Ca
IfoYGolk7tXgbf2BuBSvze+/vdWQbBdKh25AaJcNFAfCC4vP1RnRdp68uZzUGQQYGEG/9TtWRy0U
yJ/mM7rINV98HE1upY0HIC8qYTJDrzWgcrq/SNCLTjE/uFKANHkNSOeiZ4EJC23w21/RN19g0mqm
/+Vt4vls0PDkjDAohVNLnMI0vB9/ggyLJoLcbC14/hyskDu/6mC9cwrdVfnxC4baPiIVcq+CDuY0
wivEEZas2kt2fHSTQGJJ+e8bHAXV9z6Gu9P8xBGOdnRsuDSGi7k4W30IhzngHhc4ibTH0r5uvW3/
0j9e0m39mbmaVBcuALpES6MwoUK5T6Eq3s9Ep5HmTeJyy+H5/nwiM8LqwMfCZEg/HqfTqPZwEV1i
aK9A3vKzPuzxbgrB6MkqMl5eNlAbn+9w/awAs5bYgpU5HO+iQLo9Uu+RkKxfImuwtrOVBJ3ogPV2
GXKI98yb2KJpN3z4vEpQPx5AsEjci87u5HeQmS48UjUu2PjOLAAnBgJm3SzenrHJ3oH+DplgcGrV
2+dMiuHNrT9YvJnNMB/Tcwt7xv4gX2O7YlrVewm380CMDLtN+fLeNSQUlhvP5RJ6O9grdF0w413m
kWJuPMKBxsjexNp42XIEzxLqcmmgw6l3N57Q9nA+wwtJT97Vm8IVVrDDrozXze9RFGzPUM0FBgul
ORVjJHv5X15YvAh4vSofhV+eJifZ6wH3uiklzDg84c3v6UO9V7b7TETM1NmlmZ9c2YGzgkeiFdzT
6/vhrcEf3/dk9l0sL9dn4MY3yY8/76yaUaB5DknAnulDX/f7oBPjTngE64ilok1uXgjFpiVEO3FP
sPEUHhbpaSVG4511vF6qGGLEYGLs8YtSL3hoPz4f7G1TpM/D8E3ha0xDYkk91tcaMS54xt6y8bMd
ne6adIfRXRqI9y5FvX/eHAsyh1ZHTlInOmYfCweYR6cgbcViM69trv36i8HnVi/JcgKVD9doZcih
7PuBnvEphokl5CgauH4gNVPcYcRNj4BNRV3feIMtT2eGx6sUfYfhslc74Oihh8xHD73RPYkWYLzW
CDiEfW9XrZIGlwIizGy8cobcpYLOPtaQukSnYQzN2YKNnfUEgWzwfn4Kvvz0hHQ/OgzEO+gdfHyr
EOljpDWr+bX/VT+8T3lpyC4IZ3jjq4Zo14gU635vtTCrxgV/HfZCaXcvFKBPJo/0IdILWr3e+S/f
Izdlz8nPLwIUTnv8udVRMdonMQdbnkSqz420O6hFBsmTnol65CYdF+w+BC2XXdARZkwyMtzFh/BU
bM/0FNXi8+PjGw/CXOtlxbLLtVq+89UV5XNtNPsfL932H1m2dygovxsV6cPYDyzTsqEkfrt38Fjr
gKhMRAsyMLkPHdmSiCbjizcL3oh/+kqsRx97Y3gSbJhmjYy8Le8vu9yt5IN5yBAS6bVp40lPYVum
Oa6l6Nss0yrYsI29JNibZu5tvJWBN+GcB4wtBgmtgkKAi0xVzPTipyD+Wc8gv387uD3jLx3bo4Lh
La7eRN34+poJbQmVJiqQpnFts7p9F//xpZ3Q7xt8UIsU/PrB+1tvA842xfSXDzEwS3lYmK+qyaLe
cgh5WTzQ+K3dYWGMJtG16FPgUmhqsP8UAIMd2zdL6QYB/PUTio2f8Wpu93DjG3i+ni2wkvMB/+9n
FPzbv//7//z9FoSuv91f22DAdF+mf/6fUYF/5rf8nxzH/5Pwf78tAY95df/Hf/xrCOEfn6HvPtP/
mvr2/h7/8R//vv+bNvjH1E/56//663/b/q///Lf/AgAA//8DAOaLvFiFYQAA
H4sIAAAAAAAAA5x6S8+CTLfl/PyKN9+Uk4gIVPHNEBC5WYWAtx4BIgIiN6sK6qT/e0efk+500qOe
mKglJbX3Xnuttfmv//jnn391WV3kn3/9+59/varp86///H52Tz/pv/79z//4j3/++eef//q9/l8r
izYr7vfqXf6W/76s3vdi/te//xH/9yf/Z9G///nXrl5UpKrjdtxE3tpTr17xojabO8ClQ51DP3wz
akS7tc9ae92AFqY7us3WmjlLEQxAYF4UwvrxDmZLgwjWUMjQhg92vRHnV6N+3HTCwVof/eVxW52B
nlsiRsFoAjbJuwKek6Wi25fxNvvHpRAA9jWJugxkPukPSa4+76TCXpqL2Xc/BJ8fNSZSnZfZrNDe
hvxzZdhE3REs6HlOgCBVFd1KmmJO7HBpoBMHDTY39TabD2yIoK9nK6KApa6b/bMOQHpgW/pYjxag
vhjIoIq3FnaNGYwUfPYGTFYRRq154P447rc50NQ0wdZwbvnkR5YNaNe9qGcVrbncTkMFVmSrYPO1
3wOWukhQq0vu4j19ezHbQwWCx3ZrUA8cx3jJzrcGmo5gk3JUymy6YHWCfc+PZME0BrNLTjY8deIO
8ceFxfRkMBHE67KnxnBs/dnVtzk0vJWPzeB0MAniXgfr4Wri8/jOfG4ZOwhBq+xxcF7pMTXIEYL0
Vn2wtdrtMinoFAce2ntDjXeqxXx/Cq9wc76GNHU/J8AP460E7SntqM2tw8gut7sHng3RiWr7W1PS
BXxVYCIb+PjqQsDL5tnCnaMjfIFn11yeU0Q0TvmF2repN7uLHYbweLdy1B1275pkCBMoWinCOCqD
eonqsYT5qono1jqE5qILOFUfMgppsATFOEmV44DFO+6o2YoGF7292sCcXp84bdZHvmCuEPiKcoIt
k0CfC/qtBPn2faVGNAqAv2Y9hM0SafhQNfrIQtoZcFXlK1RZvDdZvBTTb38c3MEYt8FhSCHU44A0
96EZl6NYMsgbdCdUbHg9Da63gNhtA3yQlk3ND6GxQLuKKZFX2OaLumxzuDpPMfZWyX5cdpED4TqP
99ivd309u+4oQxkLOwLupyWblEYSYcoqHxutGI/L1b/p8BIfL9hg7308G/0tgDVnDhIoKPzlJXuJ
Yj/omTpaNfLJOg8d/L5HCrWfGTuQrQytjXjH3re+KYsUC/BuNRLJrZOYHU9OAlEzhBgTMffJmcbe
io5mQK0iRDFrx3aB02fQse+0nPNowwI40kdCOggrnz/lewWiqqFk6ksYzxT6EAjgyAgU0222PFOS
woM0nlB4TL1xPhSaAPuDJGKjeRLQ7bEkw93QtmhVtC+/G6JXANenR0ak29T7Q/eGHlROxRXxdxrU
TXt9qtqJuRP295eaLxkwFribtAPOzqujycH6qsLjdjNi69QE5tyueK5Zsz5Ta2O4Pn9zLMN6WgYy
MDBk1HA7BlTRE7B7VsN46ZQuh0f8MKllVF1NxaIjwF1VFVLOiV0zRRodsJNOEd0OxzNfHpWLYHW6
jXi/CbJ4yXfJGbxNOqF1nc/+N58rOKx2Czkd9EvNr0vValcvf6Hf+Xx2N18HrSGFSOhuff1xsxBp
EjZDIrbxUPOnt5U1Mj8u2CGlk7F6iSr4wxMnKxo+2UuZwyLsS+ocdvuaPGw1h188IjGzqc8uWCWA
mE6McVp3YNlJiwOpLJ7xCe0dsNC1q8K6O72o07CjyRR9N8Bafp6xO8kF73PlWGijlC90Jz1DMN+L
mcG1AUyydI1vLpu3I8NvPJD8Oqt8/sxqDs9G4NGbto1HxtRoAKJ1RYRbsjqS2PXF33t6SaqBUzQ5
DZStT4LoN/7L6eV2MOrTjP7wlZ4MWQLHtniSajjaJn/e0QJScp8ozuMyY/nLWmASlDZFj8/b/52H
9sjnD/WOXhfzAUMJlMDx8OFT73nTji2D+mZd0r3nfjLOvHcALrP9RIs41CPninMF335C3ayWstmu
k0qVtplMlOg4xIt6Xgh0VLRF2rptzD6gHIH9rdCws8I2EIfNOYWY+ztqCY0G3v5VcsDUBwDv6Vav
pWsCCljX7QV7S/eK+27j2FCr0w1Syas3f/kBQZJQ+jCL3lzyizNAs1Fr8n6ij/kXP9VBT7SBcAHz
vcsDEPXXDG+xm/LOrdIQytk0k1aM7yNn0WyrRO0H7N9PS0yvve5BUO4z7DxF21/H4soCiiDlSETd
1l+E9TsAvV8c8GGjOJz1ghIA8c4i6j+vqGYXsZZhcVtzHKxbkfP78eEBJ0YNPtgnnhE7j3J46EqD
HvFQxZN3vBsQbvIUR+z9jllQsxRkg6XTeC21GUHoVsBsZayw/zAOMd/A1oGp/6mRchzLcT74sw3p
U1TwTrtnYNExZyBb6StsL4XJuUFuENSOKxIZLUa9TuM5gFdRz4gk6fLYnyZzguKovLDtXErOzODm
gUovJjIdsWvO0uaVgudZlnBsv07j1KeOAaZWTHA+bE0uFbBUYRp9tkhpmJ71U5AG0L9kOSnOtTJ2
WxaHwLloC1mz+TYOVJjOcNi3GRK32SXmo7CpYHdUr+RoNj2f+R50MNs9PLxDn6XmYmc6sMvsEa3H
yh2XKN1aMJMPMdI2igPmVB5SWB6b07c/37OXTBZDS7TDjHg0IpPFh08J7h/ljD3qL2BMr56s+v7A
iPj66Jz1TkbA7dOG1N6Wsr+cXFWG88k7ITHeMPCRiAFBQFhGb/uo9ukXH8GmciC2zQM3u8LPHbgN
8jP2yaCOdK9uG9gaYogDpzVNxhhDQIfRi6JCD/zZjdEZBpxm1MiLaGRJqauQyLGJbc8VzFaMpQJ0
TcFoQCzdZ9I4NEBOlB123uaaf/uVCpU8tJC2teuRTJqNQLt/F0RO3nnGfKfv4EExIYpa1APe7cYz
eDvOTPfzZcs5bl5MO1Zmjv07yM3PebXqoNTqBHt0hiMRqur867c0qMdqJPbWJHDzaGps3d5dtsxp
FYAqNi3q+EDhLJdmG97HiiJVOEgZ11IlgF/+88PbkWlvy4Di7XLA+BEgvqx901a/90f4O53G3/lq
C5cAEi7W059htz4DYdytkFx+Er64bJ3DuUg6auhebS7yg9igq2wXbSrQmYt6Vid1UYc3tkn2rpeV
43UK3rQedW1/5l+8SmFz9wK61T3O2S3sGcTc3dFf/2PDqgvh/QovFBmRndHtZndWB17KGIf8WP/x
76vMe/RmYTjOAjoNsKsslz4CdoqZaHt//YzQ4w1k3/7n/a5HhGCsAU+UjQiq9TtHo+r12bJIpQ5t
CvZkddjYNVvNpxJaOztBa/SJxmX3Oojwy3+xhbqnSZJVf4bCsrsjYYfmjGn3ZwvReW3jwNmBsXsG
agSvLT6S9ZkRUJduKkKcu29sRjsrXm6mhKCdQoe6ydsfv/GyoB7JTySUcONTGbst8N3IRTw+bgDn
in6FfLVyCLlYW5MlpSPDVStb+LDe5TUrGUxBiBRGPVmw67X36gn44fV2FGY+HkQAQfk56Ti4vDyT
eUJoab/+GljGKuPD8+nBtxY/Kb6Glim5TMvhOpwO1JkOZr34AUigHFUFdai9+BRnZgLptnf++MZ8
mkyi8HuwonvwMYCYSoYBo+gqUN1s0nohYirBZ39HVF/70zgf1GACr9fWRmu3qMBsrx3px0dorrIq
HlP73IJ4o4Rf/tLWyy4bU2g8hR7vk8oDiwpqGfzqYdcq9cjC5BjBrcpTIqu7W8yO3SEAskUTjFU1
qT/RTkzBwY45+iiOzHvlfQlgevFsuufuyh/AwiotkYtfPTmx1L4PFsxNbUXe3/3INeEFlF3nhu9y
hf05tscCqB+3pKamGCNvTsa3PzYX6hiT5y/nJLjC735Ewfc7+PT0E6pvBO/Y99PSZDfnooJqh1WM
P50zzqa2c0ApfXYE0pCP05lDCWA9hfSHB2N47GSwuS4bpAQNjf/48KJtEbU6szI/yz5oQCmeC2w5
cg+oKgQRvMzWk2jEnUcWGpMAq91BpahmdTa/QrZoX35B4OXl+dyS6wKmxREglc75T694sOaLg7eh
EsW/eoFwb8tE/uILT1GZaz/9p1FpGpfCNq8/fY00y0AjoY4tQgKJg1G8bfjHdnbL7zwQOLJtzJ7g
oMLTtUvoQ35TzsQBlFAbghrvzt7LZ0iOrxAlxYO6AiE1U7I8BVctIHT7PvlgcY1eAsOFBfQA4M6U
FncSIHUKEQd9mcfsLXgejLn3p1ez8RTEEQRjEmBM0JIt6iEMtedZldCie6a5ZA+og5CTK1lvM3sU
m+c9AgFqBuy9Halmv/MwG7mmepMj/zP6tQPN6Owj9cRRthTP1AP16mTQ4H56jss70RHcHDUfMX0M
TCY+bzaci3NHxrAPfW7RrQFfobWn1utTcpI0aQMpCLSfnhw/t+1JVPVIfWLzPpziuR7DHP7wHUtH
VLNjMTC4v8sGjeyyMdl7uktQqKFH5q4BgL1voQB7q3tS059a8MN/1TpFu2++VmMn2UoK1ze1JNIF
zjVrKyuBjis+vv32anKQeg5wTi+f/vi71LJ3Bb/njbc8szKmb68tGPZNRli8342LqCsNwO4Lf/ly
Wi/nF5vg6ZHr9JoVDVjA5bmA1D1D7Nx83V9XOxnBz6VeUXcf1Sb1n7oBDEnpEJDvJBt+/L67Eots
Zm2sP33epbBg6yN2FuPuT/vniKCS4haR8vzJ2C18LvDHz3Q1zePx+MpFEEfCEUmTY4CNXNkFUOvV
ARuHnPpzHhQp/PpHRJXvD3Ppl10Hl3Y7/+I9ftwYJXA6dzX96g8+C+BK4HUYzn/1xobmVv74Ow6O
6wXQZzydoX46OtSpUsr5+nKQgRQMPfHi+8Gc61vjQbvfZ9RdJXK23ALHgu/d4uFA+tjmNMV5CNew
kKk3ycicIF1dwYn5E9H6chz5u38VMHqfNLp/beL/1httjhK0eaKDz/FKLCG64Q/V89vMOdsMEbis
N5Q6XzzkJPJ0OMe7DQ0iaPn8GU+JSvbgSfcXWAJ2EewEJtQuqOfuA3/ZRboAoTUdMbY+ir8o5ckD
Pz9hcD9r8NNHcHmGNU663gfLutgL8O3V1+/1dM4u4qiCfdQf6TaQJH8uec5U8b5ERCBuCT6tdNRh
ajxD6j+MT7a4d9b+9POXf26yQX4QC063rYcrXp7+2x8L1dLCRR4fTWZDTwVXVdzj1E8ZH6NtSkDs
NgGRmpFlY8JOV/jjy+V+ezCnNOUhFEDMyHqOtv66vk0eNCTQUX0IXtkSfXYQDui6J/NDvmVLZr0i
qARWjK/4OsX0fusNmOOA0R8fXOZVfIW1eW3pXr+d/aWAnQovp14gm/Maj/OrXnfgMWQ2+fFVWtRq
+csfMgeSZPZt0xAYjbNBFO19z/jpPRjg0Nga/sWHNcOGwFuCArLEQRvP3/Xar99bX33NckmxYK/j
HP3VR5cpCcwGWyfl/n0Gn3VGW0XJIwsbcWDHEnyCCJz7zxPvhObjz2M7q/CjBzdqBkACZCWUDvj6
lRRRIPhEpAcEl2l9x3vzUMWMPUwVkl2lUkzBJ+afqZ9+fArvv/svjzBXwdlqZurOeTWy40k/wyF1
OPX9VPe/+4eQnq0D/vLXmmtNPPzxP3xxo/EXz5+eoF5bBWDZ2rcEJkFlEyEqtXh5G5kKVqV9xbok
70cJa7kH97qtYD0US75087n94RlSPXHvT+bsJfA0BhM91Czxm8RaPPD1i758so1pEdkIWvsc4J9+
4F/9AdJFXVB2ZM+YN35pgMecNjhQsQqm6eU0sA4ahfrn2ztb3FNLoFiex1+9mBOMrzZgN33/048Z
fXpbFSjpocX7J/rW/3j94wdo2U+bmjYKGFQq3o4Uh4c9nw3kFfDgTTIOFPOdVb98lJ6vHm3eDfGn
+9br4LWWBoqkpQXz9O4EeFzwgazyWI///GV0O3y+9yv++J0N+0ugUPvdCGDWTRmqP3zuX2fPF7f+
YINC3TbYk+8rv1mAS6Dlq/pff5O/fqmy865rbIZXN5tXQ5ZDVp4IeTGfcs7fiQXOxGkpOte3en48
OhFSb5MhqRnDTMoeogGqfXhFEgrUrN+nvQcz2F2x7Q2vmv7y5/oxNGxtjN6flbvIFB0dBxqUx6Ce
3L1ZQo03Hd6XXR2z93QS//y26uu/fe9HgE21CzD++pk/vw34UI9ItlLLmjXomoKeNQLdsVmpeSY6
kyp1txNOcxePk1UeLEA/GUeijk3ONFlO4Kkybni/Lfcx36vbFmJL2hKmIAfMUH0O4EUONyK11zH+
9usWlMf2RL/1ZDL7ciQAJGeKxOVmmgxuxwWmPq0Ju5emyZzwI4BsLU1fvTn57HHXi5+fTT3nacRU
a+IOHmPVpebtrZhs0+AFbrlGvnwlijulEST4xU+M1uN6JM1HlqC2e3/IslvltZi5ggFjg5V/+D/g
6nCFdDs6KFXHZ02+/jI40ZVK/SNWOL3XfgGuGiI//ebPdbgl6oNzH+NhfvBl4jWDX38RDXTO6+/+
IlRVOGAr8taApxBaMAr1Cz63wsmnYB3K8Pm233jXES3mRb1U8Mtvqbmpn/GUrqYcDmvlgcDovDjZ
2scEbufXHv/6GX+fuwaSlU3R5jar9VxVjwpoTyP86W2TznHnwW++IoGexEzaFCsDFtAy/upPTF1b
gI9dsf/hVUYe49jBmvpH6id29fPnK/BxrxO91boD2CZ9ndVvvpIOLVU947PRwPh0lunBBnef+Rkp
4dcPxjpZ+zHp5qIFQtru6EFxZLC0752l8vZtUf/LZ8V7gkvYaJsNYkF4N4msQgnus03z51dtXtYu
gFpwuyFwB7nPfvV37ukTe+5+8mf5fphAz1qBvFN5BL3tHBZYDsLty//W2ZwrtwIa17bBO7cw+HL2
egF293tEcxWnYI6GTws/0Ft//UMnFmmRS+DBZ5+osATf+cg1BffsLGAUkvLv/wEZwx0Nhven/vrL
KpB2okb9sGc+z/aHDnzxFxu9J4L+opMFfOsTH8RHBJj6esnw8Qw4AafobLIE5S3MUH+nv3nOssQ4
hXTcBoT3XuOzVdCcIVaEmdoHveWsPvQJzE4dwNv1/KqZW0Uh/OIt3eargX++8zkYF08fm41+HmfP
i4Q/f2m4S8NYGIJUwLVqH0m1uy18smYlBT6bn9QtP40vrdubCN1Bmb7zAjHuq6G/Al+/rfBvXkQd
lQ3AlRJM9yYPTC6aRwF++T8SWyXJyDtxEPjqcWrmxRMsIj0EcEdPIsYlbGPu8ZMIH53xQPNO9c05
XPSr9sVXxE2zBPM3fkB76iH13s55HH98et5ffIpsEMSz93oSbTRJT6RDG9YsTG4htD9VSd1vfpLV
xEUQro4RmU4yNefOOxjwdr8+aJh5T/7j33C/ifYYu+eHyR7bmQBY2Ce6J6Vi8msphD99+OMT5h9f
74XgTP32LWREH70KlhLdYcv3SU0qJ2yhpWKLIiR09UyhCaF2mgsafPU4/fqx8IGGlEA73AIWP24i
2MpXjn9+wDIis9LmTNhiz/af5mK/RBlgY66x/Vqe9TfeZ7ivNgZ6vxvkz6BDIVyH5PDVhxavgpJG
EH2kGm9bWpl8DEf5N29BK+lIRmoZOwF6kQ3w7hU44xr3+xx+/SokGpVTz33eXX/89esnRmARtNmG
ujAG2AFLEi9gaDs1Ox4k6mrbuGb3ZF8CTRcfNIirD5++/eLv/D0GvIzzd27B6+p1+s2z6q8fNwDu
zCr26nYL/vhXcPRN0lUpBnysrgiq83LBvur1Md8fUAkF7YzwwbvikdVLWkJtDrbY+/pxxGVaAY8g
K9FzuyGARrQ9K9/6+Ztnr5errMKvP/2nP8Zjpl5//QEbt+o9sm0ri9q3/5Kff8KSvk7gKns8f/Mo
cwmnswzLtk6ICJdy5PPda6F8O3vYCKRXNt9IKP/xczNLEp8V7aBCx5UedC/0B86NDUyB5ukLUuv2
ybmRfzr1RDUVm0X4MD/8eLbhOTzd6e7pTjHzI8uC2n7wCQlJ6c+nqg+B0J5ndF+3jf9XX7/5slH4
n/GbPxIMoTwS5TuvHu97cYLr2BZ//lA93/KmAT9+tTUE3WSh4uU/vUH9crH4zCA34L9+TwX8z//8
/3iiYP3/fqIg3bE3AXuj8mdriFNwTZOQRtf+AZo4P4RAot6LYqjvM0noZAOYx6NFsUqy8VPp21xT
tOCOg4FkPstciUB3JXhkNRvreC6jroN7ZVrhvbpVwXz5OAJMpCZC3u4kmJ95yTuIP7ZJDaQp2XB7
XRsAXtWOojmMxpnr4KxGw6hjf9YxYJ4Y2pqE7IiawfYNZhMuLfQNa0aL9DJHvk/VDqbklRMlu4Tx
Z3wLLZC2B4O692zPpwM+EuAVDxu7hdRn8znwHUCYHNJkjF+AeKsy1JTLNqdok/SAfXQ3AZm8KpEQ
T496WqLvBP7oLRi14Bzzo0ElwNqupDs57L4TLyYCFc7TdwKrcKKsvTN8Ov6aHthk+Z9WOCfwfowd
8hnBKv74VRRql+dLRjyJpnoctSSAJ6oadFsedL9rk08Klad0JCJxe5PydWbBZwQHmh3LJO5ZNoVw
MBaEzWPex92pcCB8dgPDezoVdbd7dhFUM3rD2/BexezTX2UA1TnFwUpJMw4sI1U0sbGpOyoKn69K
LcPdVnTp9XIXAHm9FBH2asmo8arTjNE66aADogN1wCbhs/5UdKgvBxNvd48w42H/VGHArAc+joFi
LqtVmWrPMIuRZtB7zUJJCmDtr3tqbtzFn+R+8eDuUmLsSrvS/AxWHcLVeqoJS/HFZJNwaMAugTLd
ldesJs68HcA8vyHaKHLDh1kzc5iIBsAB2JOajlqOQHMaThjTNx+ZfHqEalbHKREvmZKx6WHmEGrn
GbuadcvYWVTOsL8Vd8Jy2MRzYT9KcBxHF+8D85PNmtueoXPpaupajgKWSzCVsOh3It2WZ8mfIrC/
Qu5swr985/iEDVg42yeB0xKNzHo0LTgF4RVf46QDjNz2ATw65gPv7tU1pr/8Sa4doUZ4zXzmnd4L
6NWK4SANjiN7904Ir7VrI0mQP5xh957DockUAqPGGKnz0i1oT7yh3/hm1I1KWRPJu8Q78tnUtNgF
i7o5qSskXNs0W5pjAYGErIjapixxXpMGQsGLAuyOyg1M3mAMqyZ8vrEh6q+MXc2rDnPr9MFutVrF
1K6tFOwzZCJ5PI0ZGyxXBhXXRWrvL5R/smKBsDmkG8Sm9dWf9cvYghV3A6wbGy+bu4tXAA0mHUas
sAHjUpBDo0Qz3rurE+en2HDA9K5OpIn6wzjqV3KGn7YKqB7UDBDYimd4VkMbYzubOcuKWwuGwklx
DKdqpIfMj2B3usgYKxDz5SM+LU2qjiciyaI0Tnxc6VB4CBG1gGmOzJavHXiVxg37rvzKqE3pGUhV
fKLBrc44z+4dgofinZIQeKLJhnCSQHteFuoJKo95b4aVdmiOT4qkMTHHcFxdFdlSJWytZ9nv+s+t
gJTrEt1WQMym8X1HMH6qJ2oZCuWd6waSym+Jj8Z5yWp2PJABimGvkU685iY/S/f8d//Y6ML3yLKS
2uBgYoQEkuJs2j3LCLoTkKnemUE23p/KFUJ2f1LvcdwC6f1YN3DQ0QZbcrGLWegfHVieSw/Haueb
ZB+aInxLEkQVPA4mK3aCo44CarBzuRd8ZtkUwUCr92Rd4l3N9I/aANunR7S6cWHsnsUQwOPBO1Bv
dypMPhWRpTVXblGrNrb+0t5LG5J2nyEicAOMymp2oE6tmF7zi1LTyyVLwCxNA/6en8+lfNWBwGaE
7la05PO8JANs0TPB5s26xqTBbgHSQrewsbnQjDVhEqjX8k0JcawQLECJS5hdlAO1EikzWRX4OlAh
SvD2o9gZOfU3B960p4tgKmgZy9euADe1VGOv05xs3l1EBEfQH77n9+SfLT6K6vf/U4SOhfkhz65U
ldzx8L58nfmcjScZyGvNxfh61fyZZU0Ewb590v1zU2XcvgoCuLcawta0udesWpWG5p0PPd626SFm
iicb4KLXL8Sfp7u/JICdoddODb3M79KcK90t/vDe12511rnC5gy8XXfEer28Y3KsgwhkoNqg0oom
k1SeHMJmPGfYaAPmz4uwakFR3wg2HueJzzOsLLVcb22svw6uP5t7x4J1stsTpm22MR85WoBwvwK8
A+/Fny5Xi0Ah3hnYWQ/vsZWToAKvpAtwNqHG5Ff55kBjWRzsX1efbNrAWwLLCYUUH6sbnyt9W2gX
LATf/mPE6152QriH0Znug8n0lymuI3gtjQtaQX0fb6jZe7AMJQtj69HH/FPSFsCj8ELv4aiZkyeG
FsRRjDG+bRfA9nhrq5/VaUvRrDixWCixA1yUQqpHb8f/ULVNFU71IzXFhvNliscIVEf4pPvv9Yjp
ChCyZOfirQol/vnxidApQiRrYIrnw+4zgOd9A/BOG/txTvYKhLl1+VC81Vk2G8vLgV2at/T7e9B+
+xHA1mnEFjvoNWuUkSlffMSHF1nMuf4MAfzyDXyTdrrJD6hM4LErU+zu0ldGEidOwDEMNaLIoM6+
6xFEodMTbV1g3qaRkqr7jdvhQy5u6oVcYAEOq/6DDXsSR/ZesQEM7SokAitsTid3g9T9IXqQ8nXo
fcZe1wR+arhGrD+vzM9HugcyAIFPL9x4juQUdUzZ6IGCPn5p+Ev3nEO4GzoB++KjA32TmboWXcoj
1ofOq+egeS+wdNqWelKPxuk+sUB9MhVRXUPjuMB5u0AZBxSbToXA0t47G9ixQKm7S3fZZkqsAa6D
2sJI4Aafzn6/wO5/AQAA//+knUuPgzDWpvf9K1q9RS0IN5tvxz0EExwuIYk0GgG5ASEkgA1Y+v77
iFTPaBazm2WVVKnE9jnnfZ9zcGStokaRvIpPc9BaMHezS5ExZTX9WOcHRHkWYoc0z569v0MOh/fj
SP157Qgom3rQfvXAScQILM/j/QH56bWhW4NEVqfu9xXMi3Kka75PllfRnNVDywfhALak/9M3j1k+
0V0/1Wz5FhsdNCLpwvc8ZWhpk7jThtLz6MWpi2I++rgEGsw68io4vRZHw7bhc5JDqn+yO+o44RBo
inuzceiNbi/BfJmgXygUm9w+7qfBK2wYB2OJ0RpPU2MpMYgjERF5893WG3MZPdjS95scR4DYkr6P
N6jx1xNFz8NiMZJ5KTSE4wfvdWOXzF2w0aGvP2uMtaJjs7C/HSD/BYQ8N89jQt5fZELgWD724MMH
a30LgJutE1nt8kiWq+zl8P30ROpbaplMrWfeoF9kJ1L7rYuETx2Y8PVVvnTVz2v+sWP42gx36stj
i5i/gSHU3RPARt18rXlDUhe862GP75IsF8OO41Nwer7lcLqSgzXcDqiF0vmWhfBLAFo2zqgC/ptl
WNekZzINd3SDEnR16vWcYU371neVipkC9dFlk4xLklfw7t70UA2x3JNdetThlQ97srTBATH93Gbw
Hgn7sCnqDi3nsAvVwtxvqQUinW1CLRHhnu/HkHOkOlk+pAyhvfcRxZ+8TRbHeIXgxgUV3k2Gx5g+
7gKA2oiRz2sY+hGdAwGy8JlRM/q6veQB+QbhZdzS3W3PakbOVwEeDe5OQ2o51uicYAg8qurh5jwF
/RCQQgSGqOj0T5+vehEOam9TA7yCXqhHT4SltRwJUZ5Ssnwad4HDdEJEOlUuErYq8QB/r5+Eu8gO
mEdf9mH8/ei0LC88ogbNBjWVdl/CtbtvPTOd/ekbbIhMB0Qd5AbO8wtS96DqhVCkgQ8H45jS/WSF
CWP846GlCjXwLx7HVc+poN1eyffcpGwaUtGE/At3FPu13i9WGuS/9cbxnTdrkVTG6ifEXTiAqUlm
hD6y/HAtjP2L+Cim1j9xcM1f1AlOivXNvR4CzWkx9UB4R2t91KG9p3WoDuWzGL3pcdBWvUB166Gj
5XlvONgfEgOHF9lhHY/0TsubqMZ2LQRgXus1NMf+QtHr/ACf8aPGYGg4DusRtySsAVsZyubpTjjl
KRWLxk4xDAtLxY4m3HvSPecYTIs5hrCmTzBdJnmBRseX1Nkvas/yJVUhC+sslHB+KsbpNRPoW7aK
Das4s2VyrjFYNuSJkVo/0NRqEMJZ2CXUyjOLCTXNUvjsgy2ROrHo55siPODNb+RQDPcJWnLoQRin
nIr1HEsWSYGcwZ3tWGGzDwNrfr0ONw3vygstdrKTSHoFJhh320+4OUZJv+hVfIaH5XShOy6z2aYM
kgXcmPqh/lAayec+fxeYhPGX+uS8A9O+NV1tUD82Dmp3sIaN7PkwtKeSHklj9IwPhuXv807Ha5/Q
HFapJhvLlmgrIZxsMYVQMY4Z3u9H2rNSbF1YnMCeTMmFsZ9f1x5vp6J2EtfFdxS5Vm36tMCnU19a
fS2r+U+vUMOKK8BKnTXQ8G8PAmE1JUs8RkQLXtGX7uM7KIYk4kUwHbicCN/vAa31aIJS8XLwzjt4
vXApr7JsENun1td91rO01QPI72KLaKQb6jHcPlOtvHtPGruDUC/ZBrpgzScYfZlZCP6RTqDgPi01
L/GxH0OtEMCu0t9ESEcHscyXczjdCpPMj0y0pq9tyFCk3ot6eEPBeLx9M/i1ji1ZComB+X7F6wTI
XsO/88h+ehgvk4+3w1HopzUfyjGOWagcfcv6+RN4/VSvPz05rH4e7Nwux464aYsZ4G8LxfQ0UwMN
Wk0lz+fgx5pOeNvYGKz8JIU/P7nf3Chb9oeyhIqljtj/uFwxv+9lCJVyrEKu2ZvW/KnHHK76lO5e
VgaWt3Aof3qYqHodF9MSKz6kvOyu8RMX84NzBigK4kCdw/3NBnLBATz1YCaazY7WrKDLGQjE9MjU
WUPClCD1te88OTQ1t401MuRNYCh9L1zuvNmLZtu3sAoOOU2k3WItfXeCMPjmZ7yFxLOEM9m48Cm2
Kfkq9wiwdLEPQG9F8c8vz+EkyxBu0UQd+XKzhlE3Ui06xFoonitcDKyXdLDyIur0klBQUvUHFXH1
gaj42aA54x+++svvaqscGGs1qwXlFGyo7/WGJW6s81lZ8wc1RL+3Ov1yJ6qUHDvqeGGNWJHk69TH
S6a+YB8K8uMfq76jvsMxMErL6wBWvx6u61Gws9p26vl643H4fAhsmdrEhet6hZuj+knYcqsIsC7V
MxQjSyxYd94HYJMuFVnPB1pOY5XCGh0iIq36bT5sTBvurX2IDWLCZIiq3QP89Hu3MWZAL9HJVlk2
CTjJpC9r3fO1BbVEZuxf+SxZ9ZkNGwFFpBumPWKxXT/g6k/p/uXAZKgCS4faYlLqsGxfSD9/Ph+/
pz899VUyL4AXe38h/KrPF2/efcFOPdj4uupf4ipFDsvcYuGGu26Sebc9Dz8eFgoDefcT3h1vslfr
Ew2Pk4QmasfVj2+R7VnbsoVJ2wC26b7AQQQCMB0ee0G19RiQpeUAmJ8p5wO1hhJ2ErtFVOEVD7rL
tcfW7OSgvS+BD0v1QcLl/Z5rJqej/IsvvA27vmbtjjRwbvcU+6cdswZfBzb41UfzClAiiW/HhfUG
5dhSO4Q2Br4IKrQNI+xXHscUMxzUn37m7fun+OL44GtZ0+p0iwCX0FZDLdxm2yPdB8BiEm/eU/CS
pZBo38eVLfIt4mB/tmrSrX7ry9DXgx14KHh31t1CqmX1DHcnvGBnjDM0azuSwUv4jKk1k6lf67H+
43/UffhcMt7n7wTW/aSBhlpr/uWjS0PS8HXeimBRMi+En/fZwNnrdQdMyM4c/Ej8hSxHVtbj+vmg
f7u6IQPRgy2vYjirnsFd19dzLZqEEweeJBXx7lq8WfPjedMB5tSNhsFa+mXMgXi53XEYeh6adjtb
gOZbS8L3U6qS8fUeOSglp47wzTz15Hi3CLzv2tUf1EXCMvF4g++a7Anb7D/9EmpaCNFrKLB1n18F
C9R9DvWP9qL4CfYJeQuHG5ja7wPb6ehYXQ8mGxwcWcG7IySA5R0uoepaCYGr3ifDVSZw5QM0iMdz
/edXVn678tadNSkD/qo2U180XHmLSEkjQO4OYwJ4zuilyHyLsmrKDT47XdUPrzk3IQCsXuvVoQCf
obNhPWTNWv91JCj+pGsJTTUarPWMiYdyAMnGsql1+og1zfSKgziOMHVvrdtLDa5EGJ+qiBoT3dXz
Rn5WqrF/YWrOvmlNvnB24WjdVbzd7paeNFHGKVam+eRs7nY1e15lAcpXPyHCXjLYJiCbAPI3brfy
oqFgT+ET/uoXdlupL5bryWxh8D2f13o6WctyM1I4QvYN535D2GS+HsLP3+DCeOs9eyzjA4T9Y4Pt
vgSMHT04wCSrvFVfPgBtnGMON/EerfxYLYYLViHkbXQk7MCSfoYXWYehcxRC8Do/2BTLigofcO5w
8JYlMCl61UJabgSqV48CjLmmufDBZzw1i5BDM5AXD1o7qyVcIYTJtC0aHb6VPKGGPto12yrCAj+a
u8Xej6fRQSa//EhUS4XJ1DJaAVjGt9VfPK3NbrtOvIG8pjZ8g6TDVzmF6UMNQsi6Yz9zCZgAVFlO
sfFpLRYFWgx3l3lHt4YDimVDNiU042gf0pWPjbCNOXX8dAC75J4XTK2DCoScHeAQhnYvbpxRhi3V
MT7jILdGW+hE+J0XB+NnfKonb0nP0Bxtg56a0am/PVwErZaG+U8vfLTtQYA0iEsize8Hmhs776D8
iCxSX0ZiLZ0ObkCVtm0I8pwA8hZHCDY7fqTBy7d6ZXopBB43zQ6vetrazEv5/eWncJNZ9+JXzwHk
ZY/eLIbYZj1/Gt00e1p8nhkYtlHWwrDLXYxwCdkgca0IJxQn1LzzVT//+hvyht+FbM1P/SU6uRB/
HwPh6GZiNDqZBG6Cp02dyVOShaDLA67rQ375eVjrgXqukYu3abogVqHoCzX+fgoXbysWZHlkIqTf
QMfpXnr+8v/6NAQwf34N/PgX3PasCCtuv/SNWBQPkIU5h3cJNZJNrmm2Gs2nAzXJNWVMTl8qLK7v
hCL+iJj48GALwusroj5lfTIlU+dDL2fxjz8DZuaVCS8XcCeCmo9s2ebRAXj5HIfZaZ04vtm+qRrc
pyIqX3/QiM62AOludAi9GDFYXks6ab9+irWc2uSPt773NQp/+WfB8dmHR3DA2E++OWIa57qwz9t1
ouUhJOy1iB7kJ/MaymqZJGNysIbfeaVB89yzaY8vA2itzsKocY8Fc7JPCbxgQ8Lj2n9YklytoGhg
k+6PXJpMKkEZ8Kis//EXqUQ7Hb5vpkv1ehf1C/b8QXXRGFE/dKt6EAJBBuRYWXQbb5ue5pwkQu/0
rbF5/vBg+lDCwXhkdOV9Nfrcc/UMTXZ8hFJ0C9nyFs4lUNsqJEW6N/ph7SfAz92r6T7MXsUyXWQf
fpuLQnddhRmbW+EG517ZULxTv4wJ2YGD8tVL6HbtBxHO3xLQkLtPpiuZ0PAZLyX81ac9y+WEhO9A
hPOxO9ErelTWUEqnErjq6FHvuQDrQ56PSv35V5d/1vUyCh8XTh+GQ22ySDLBl9LAsE7OdLvbf9H8
808rP8e6n9XJeDBeLoSvbUrt6oISxvp9B6P5eCC8Xz/6MdWatf4YCZGEa11QXt+JgPThDjubWgUL
b2y4Hw/69WOtxe/3Z3DYGd2a3+N+GY3ABREJHtRXvXe/ONJpgJudNobThsY9/em1R3Qp8fZUuZbg
3zcBfIXrEwP5cERs694XwN+fz/BLzh826LKuw7U/ih35wlm0uG8GqH/Oexp0ugua4651YeiXFb6O
fMYWKqsHcLa/PpHCDtWkDDQfIHB+4j16VGg5U0mEva0KNNhYUkL61ryBeGtkeIujZ/HXT/7VZ73e
zTXR2OkAl/ekUe+nN/G9vEHk7B947bexubit9eK98ASe+Maa9qq4QPoN9VW/RfW01lsgEN2jwYlv
0Ph6nUtwNl1GQ8+eGHWC0oTr+aKmSC4/f9XA6vR9h3PD92AWTvWgDdrMsCkvERqUYduBlY8TIrsb
9utvwcfGcgm72OdiXOP51y/GJ2Ya/bzqI9DJuU9Run/WRMz1BVZBnJO6E0RrSsp9DB+3w4Bt/3n7
+d8GyHkLww0ZTz3bvw4EIpA/V31dJtQdI+Gn14k6lEYhogAdwOrniLryVQHYYIE/PmaMSlsslzex
geGXD4rV16sm4qR4cOWfdCshqZ4qQ2thEQ8mzdxXY61+poFrP5CI/NPqyfOz5Nr/x0SB+P+eKOhC
n9DtpnOQWN55H2is2dIbVTzAXqSwYWsimwawREAqTjsfajyWqB/xUs3S8DhB7d144QuhCQzFfsfB
Y6saZHqfGsZyrhyASN8onLPo0i/W18uhfilb7FzRyMYd+Lqg8bIb9VD3BOOnmgZoJZFJvarKC/rm
YhEC0J6xjclgkb03ihATWSVdUylgegkJB5V7s+Bt070Ler8lEORLrVO3du717KLvAww3zyVPGmVW
H56QCcKje8D7vNwW7MaVLljfD80i1BZ0R+UUTtf5gL2v0xdLKfcVSAVqhJfRMRAjt2iC+9lN8a6o
IjDg9BTDl7kLqV0iqaaz0yzgoZ9s7DzQvp7vX4fAu3x0cRgqYz+MiMQqQ6+RzMZJr8ULzzdwn4GI
vMfOLdhN0jvN19yJIpunYPGeiQcohk2o6lWASNiNHdSUnKf6V4iLKTxON/URVzvs2ChKZk7d2RBv
bAMXgH8DJh1rFc7zbGE7JAjQK0lT6J3iCPs7/gzmqH9M0LyUcQg1RWHLpRtcVa+Tgu7e/K2g162+
QO+r8ERpnAoty/lxAOhq90Q5Vks9jKg9gEdz0vG271zAXlzig1M6dPhkdgFb8uc50+T94pC5ET5o
hOruDAzjdqd2gpT+28ufDI6vdQKDlidGpfBcwsx9EroXytqazvaRA2E3ctTeoBT1XCme4SWucah2
lcPET/dstOu3arB9IX5Br7cyhk8fMYxKPkDLeT4T0FY+T4O8nIt5mO8H4D0dF1t+1CFWhUUL2y0P
Q7DjCRv7ajrDPDhyoVh2cT2eKlCpo8TN4XDlq2LW5nSCS/9ewnEom4Iokhur4mdJyHwVvjVjx6EC
YF9cwrmNTtagFE0JL986wP6dP/YT1qwBPr0M4u2+QwlTjnULjzKRabAooJiq/g3h8VZvMBazAS27
OZfh5+Y1dDdWhC1ozhuobc4c0Q6KhKh2rDh4hkNBT8hRkqHV9IMmRVOAIylKAbve0gNMs6eGHQdF
/fzybQit621HzUQwE7Glmw5K+O2Gyz0i/aLghfA4Vzlqd+TdL8MddrCasj4sK0Vjk311SvDlvCPe
brseLNaciOAsDzk1m2jPlo5qGVg71iHfZ2M/0YKYgC/wGwcv/omYs7UfIDQBwttv19b995afAdgU
MRE3TtmP+aJCEHzBKeTWDiFzyX2BrerDcPiWBIyo/xC4PcVFKFqos0bDFAX4qbwnPmyiW0EyublB
2ygNXED+bU14bwnaKMGZhmZ27afgOE0wmahP962SgAVSNYAVzD4YX9aB4OTccACrqkINJmyLhqUX
Dtr9YUNEF70ZM0+2ChJVjbAnOR9r3vbfDPZvzaFb4gjWAJtzCeC7jcPNut5vRCdTy4WTRPqe/ybL
nee+sFyqgcjf6mItb7ypVMA3F7ydnYSNZe7GEO/sLTVGwbOW03lIQZvtdIz0qkLTiNoYbD7LlcC5
3CdzgroOFOszs/6bT4vlducEcE7JjfoCvxTLyMOb8s39C7biyAULRxUZGpdbib1jp6NZVn0T9q6X
hMreaa3f+QDuKX5hP6y+Fqte1IUfzr9TR0Yf1ivcQde0N1ZDRauGv/MGPRTH1ByioB4dUA3a7uNy
f/l7caPirBb+Qws3ZxSCucr3KbyLD0xvuoJrdiLXWN1H9gUn++gN2OPtxaAfmUbSN+mSReZV9Vdf
8M6sjsnyPX8qaCZREEoXR+oZPY4eOLl185efZnsRzxDnMkedGo3W5B8VWylKYoYNIS5gxn1+wMey
E+n+rGwAO259U/VezpYov3wnb3oClhpaNHwofi+tExJAxg2kaz1I5mxhDXyIDwe7n24qhv1GbuA1
rL7YuArffvr2hICt4RypeYowmC+qO8BhnBl2t92GTa9RrzSWvHsiV5Va9OVbVzVXih/YEdG3mLYv
5Qb6m3egN0uh1gy/RqZdHiShPldVNXs7JAXAah7YBESuyS8fKLtiCOGgQETuXe1BSWr5kO3Jpl+c
3DOh/rw12GREYYyFF1udkzePg7RcENtugwCaym1PnlKUsukgnGxg8QcQapMSo6UwzgGA9zbFZkpu
1jALsas2Pjpi3Ch6LR1OPpF5HtcYpfy+aM6aX8Jnmcr0Yjtva6m7b/W3f3aKZDYLqtlBirlmXR8K
5r6acmj1MR/+4muxVd2HL3HnYOsV2RZd8yl8eWmKQ13BPfN4+Qw381LgwC0ZmDT7kEL34pR47ytS
vfhRPEFTKffU4KOknj9qEEB7e1BwyCttsuyNOAeXcshoKCnv3/k7AElqeJz2aANINEcdfOaVgXfr
+Z4l3/fVW1bdsGVHHetj7grhZjOVoWrwOaL+Gw3qI6t8IrNKRmRzBzm07pGOdzNf1hPayCrkjmcF
o3upJuy59TwYOG6D9fOprdnpdgzgDse70J2RUQzPq2FD5+W8wsfp9E7oGg9Q/RRXwnxyBHNadDmM
OvoI+4pHxUzmGwTJMO4x5tkZjIfiY8K4Ve9/6z0Kxs0D6TBa1MqI0M9RvhUgcmxCdVWgjKgn14f5
mSC6PTunYqnlqgVv4jPsn3gREK9rG/iAmUa6xfHRgDfT4XfeiAS6JiFrPgMLgDpN1vdHb683gW9e
+1L3juyCPUlB4Nf0y3BZyKX/vT7s3nxNTSX6FuxCSqj6C/gQmXe2gBCvE2F6U/fhvO4fs/lZh2mr
IuqZXQUm67XYEM12R4Oaf/bsHF49NSSKTXV6qnuy916Cpn4uV4wpKwpCu0enbXF8DdlIDv1sFHWo
tXdeIdLYtckgC5EPT/owUIdDH8RYyUP1k/t1OB1ObzZr/i6Ebb4zws0an8sGs1S7L4+Qlr/zt+4X
MFgUYZeiJ2PZ2xBgFIwtXvULYmVYPiBhXIu3yFGKOUGPDt4fpx3GIEMWOZ6HDvbqeofKUtb1pBW1
AI+tbGAPVCJbZswguMjDYa23iM1v3/6qq16jhn56JHOT701o9EkSCgyl9fLBWvirvzS0M82aN88j
hNY75uj24Jz76dTcXCXlVC+UFafrPxbodUAv7ELEqBPQ8BTSFor1e0/DTBn+6i84uk+ZJAK6grmN
lRj2rRdSu0Ii+NY8Z4L185KwVT5sjPpugU22S6mend4WY6XEKdq+cLC1/v1kH1Ud5G1tYOdEHuCj
GtcQ0hc7h9DmHSDA5nCDr0MWhzAvo2JW5mMO0cv+UFTzqF6kt/uA5rM8UG+ozvXidaQFllEiHLoK
AQMH6g7uK3AIN2J3RrNjigHwnls3VC9V10+//Y5TmodLJlTWPH2tAObcg8PuB1X1DFUjh7/6xvLo
VTMNihVc0FsiCuU1i7KS5wBawJ1IrHNqdpO8Dj7CKqD7uPT6WckNGaCdS6mxCFtL9DrS/PQV4R6K
Xw9dmjyg6dwy6pPKQex68gSoK7cneXaRWC+RcVmgaZRHmkf8qZdgKRIYbNw7gQlvW5vcZC7YLQoj
6rtyeyG4BgEkCI7U6yulYMbb5rRDLgv07DqHYrKdGcJiONK/erg0XpVr5XB6YX/m455s5yIEqUe3
RKTIAMIEXiIUouVL4KIUyXKKDrK26mNsi8TpmX+yvmB9feyXfIZGIcoCmLrqegdKl9UDX9QV/CZ8
8tMbTIok/wGdq/Mm8MFX1hSlGfzzB8mCbgXbbS0ZfCvvRAOpHOrRrrgMCOhVU2siU7GcjIMA4Xjx
qe4Kp2KAwuGh1fHuirGr2Gxpz18fZilZcJAqd8Cs+xxov47Jz3+SQ/fKYCk+RuqDki+I7XsH0POa
ie0P2YKZ9z0ZDog3wl7gu2LRsGqDnx5LdbIHk5Yecnh8DOuEHdoVbAhzE4aRi6knOJ+ePV40h69s
54fwxRvWdG2OPkyD0fvl/3542OkA3de2CKW7k4HpcvVTuCdKSM2HoCfSjk6p5uB4DmGjaMVAmrz7
izflzt/rvie5r77f/IjxMZtY16VFBS8lyfBu67T9WKt7H1ZNOtAy4y22WeYshTXM7qGod1kxXyoQ
gt/+bFvnmCznu7TA/d4uwzN1vsX0SNMF2ixexYGjF3PaP27ams9xJiK9GCXf9GEZHL/U76oX+wZy
q8MZcP4ary9AV/+vtSEyiSCSV82G1/gAVZMNWA9PXTE5mhPD2JUb7OUVqJfyeTbhw99pf/WX5pJx
AKt+xOYSIUB7Lg7hvTn5f/VqhEYqw1eaJaGkds3qB68cBEVzpYYYCT29nHY3uMyLQpRNta9//hme
uTomoogeBZF5VVaeZSaHmxPR2XCzrzrAR9elzqnTCvp03geYuvKBrh2hes0XITSTJCDS0jnFX/zx
232PnQ4NxcShfgLqvqjXeNpb03vUQ6juioqaOdGSYf+SH/B8q0902zkpWw7ymAPt3vphWGcyYKtf
09h1WbD/qVyr04pegKuex4Z+0gtJvh1CsLvaPN0+HTGZwXy0YZyrDxrGWYGYT+6++iDVFntrB2tR
ebWFM4YHqjdCsuqlpoJJR4OQ17JvT6fXIIMgUwpsIqGumYflB+xbP/zpx37mc53TbvbpEkrXrgPj
uMg+TFPq0t3LqYopFE7nn76lphT5YDmehy9Ai3IPxQNq0V9+Md+JRx65kLJ5mm8dMF9lFLIFccnw
vO7sv/waDAq05n6ZblqS0gMNcuVuMftkt+pPv4ROqQNxaySZ5l/dDbWfZGeJtzsnAku72Vi/CELN
kpOZA6rNR+qLlQWGevQE8PMPOFbqeqiF8gDFaMmooQoOm5/qvgS7j81hlPAENVMax+r2dChoQMuR
9U54gvDbemfCYKSjuf0GC9hE04Pwd3Zli3gKJ+CgeAqlj7Ox5pOKdWBotzPVPyc7Yc5dlsFwZCLR
Vp407/qvKUet/KE/vbrmO+4Xj2RGUYGYc59U0HzRIeRnloNppwVf0BJPw4ePsFhz7rsVvIaPL5G2
Xc9YLu1icLw9NzRQyyDpqrS8AS5pTbIxSINmHEMCrM1WoC5GLth8VDtUb0t1Dpc4OoAlkImphqaC
cJ1GbTGRNG/hpRlSXOplWrMN5Cf1Fj4e+DgilKx8YwFX/VSF011IwMRV/AH4L5tRtPIRug1PHcSz
qxOtVgTEClJ+oW8dDGpPxE2Y9w50qD0vJqn0KF71whzD/cY+4vPJIdYidJ2uZtWzw97HQZZgj/sH
MF63Au+v5RstkREtcHNcnoQl0Rst1Z0LwM+/lQ7vWpSHXABXnhCu/KzvBWe4gXI4vkIuUsZiOUVn
VV39RyhHDgFsS6cO4kqGeLc4D+tPj9MTV5EXQgfGDDyX2maeCozfysMa7k0pwFWvhMctqZM+eKNc
3aK4DKsommrGlVwO+9zH4cvp7gW7O+9GXvUlDT/Krp/D4plCGF0CHETlkrwMkxOh9LkAarUkRuRk
nEWoRMV35S/V6idBAxfMuTiweYcRDS8uHFx/h22e2D2buUsMf/7iT78XlSrDO3lEeGt3Q7E05+oG
o0rt6LbuOrTYUTKoK98h4oyeyXxEXQorgl5kY6HYEoyXmkN5t9h4hyqhGI/gEcKMq1sc2uWjHvfx
egFhH/NESxSxHtq9d4Ycvx+JWvGbgmAjdqEcFQLF52yql777xCDi5BYfImEDyEAFAlXQVNSk0WAt
kFdj+PwiEpJVn01Dk0N4PBMtFCqUgenepCJ833lKzYNQrTcRLQSCe3Oj4ZhJqJ7C6AyeXgox/rAS
NRs7aqFDDwNpSiT1dLjlLvhs+Vv4GRydUURlE6w8A3uK09VsKwU2POd1RhqPBP20saNGC6cR0iDh
G7TylQyCuiloueqH8byAGArS60p1LbpaP30N2iFzqQEEF4kAL2fItGUMFas69pKP5QB+cq/GUSwM
6M//H9sno7upCntwOu2mHz/DuiRMaPKcOf11EMPpKyzJ/IlOC5xfzA4luwsSBiAnghwOWxpapVFs
im+YybvZhWSt58nC5IcN6+8up8bKjxf/GQtwt9taeAs76z98UZyXKBRxl9YTb5/1389ELiuABimN
UmU325AGLW8UgpResj8/N+6VU7EI3UOH82u2iZw7IxjQPrgBz9kG4SJEfTINaSxDaZ62OJqiTUKI
tBV/+vzHA9kvX0Bt2+7x3lRkRoSuMyH2RgWHZvlEk7Pfn5X1RrZQtiuO/fwRcGlcke+tetezqu4I
lOa1gyjxAPTn8OjDbBhoKG4c2BNfJhk8urJLuFDZ97PR1wcQqsCiQaNoCUnlZoKXx5BQ+0R8JqC9
fYNwf8FElpydRZ3wzoGW54VQDqprPX2bIlZ39cGlBSpLJg534QtNlITr+j7qZZQ/OmyF1KZbtWvQ
MPWvCeKPbdJIE141WdcfKHPxWvX+Gy226vlQ3bY9xpusZySUX0R5LrsBr+cJTeVoTCAkwA67td+x
7IxCh+JxOuGzVonFZ2dqjbryAIyiEiYTRI0N9ePtRcNO2RXTXShlyJJXjy0hehaE8tADv/1VAucF
RrPiup/fpijgw1qkJ0xAKR8buiscG/34E+R4PFLsZ0shiqdwgcLpVYXLTdDZ5pHvv6CvvD02oPAq
WO+MA7xAEhHVrVCyEaOrChJXzX9PcBTMkgICN8fpSSISbdhQC2kMZ2ferfnh0E+hcD/DUWEdUaWq
Qev+pX+8pF37M9NjNHw4A+hTM40OCZNLKYWGcjtRi0UmGpX5msPT7fnETkSMXozl0VZ/PM5iUYVI
EZ1j6C1AW/2z1UtkMx7AgDQD2y+U9cwjpxtcPgsgvKs0YOG2+5si01bCxi2Sk+VLNRNWXrbQsFV2
YLme+xwSiXtTT3G8Wjw8Lyq09lsQzqrwYpM/Bi3kxrOIDVMIV74zyWAXA5nwfhavd2zyN2C9D1zY
7yoDSTmXEnj1qw9Rrk7dT/v01MCO8z44MPm2GBfjVsL1PFA7I35dvtC7gpTBcuW5QsKuW2+Bvg8m
sskQLaYaUQHUdvam7srL5j14ltDSShtvj52/8oSmg9MJnml6RBc0Hhb4gC3xNbKseo/hcL1DNZc5
IpfOWAyRhvI/vzCjCKDO0Pbyz0/To4Y6ILyuegkzgYxk1XtWX0n6Gs9UIVyVnevpKZQtOOlkoGYh
PFHX9W8T/vg+0vh3Mb/8gIMr36Q//rxxK06HzulAQ/7E7tYiSWGrxK18D5eBqEWTXNEBKnVDqXkU
nmDlKSIs0uNC7RqdLLKcHzEkmCPUlsiLMRTezR+fDyXPUdhz239T+BrSA3XVjlhLhTkfPGM0r/xs
w8abqd5gdFN7it6lYnXP686F3Lax8C6pEovw91kA3L3VsbkQpZ6WJjd//cXwc63mZD6CRwCXaOHo
tuy6np3IMYaJK+c46oWupxVX3GAkjPeQTxXLWnmDp40nTiSLGn37/iwZLdhZB4SdewfR4B8VF3Co
sUMBkwBtHotqwrmAmHArr5ygcH7AnRSb2JijYz8cnMmFtZd1FIOsRz89BV9BesRWEG17irZWC+/f
xwFbQ2TWi/P1/pM/0Kc813QTHiZ4FR81NS8RLRZJchuYPYaZfHf8mbH2VujAGh0RW31kFezxeuc/
f4/9lD8lP70I8GGUyOdaRcXgHZUcrH4SG4EwsHZrFBmkT3aixl4YLVLw0gE0QnbGe5hxycAJ5wDC
Y7He6akYxefHx1ceRIQGZcW8yc1Ku4mPC86nyq6lHy9d9x+7HtoWTNwMuvrhvDvRWFkzGr/9G7gv
VUgNLmIF7bk8gDvNVampkTOaZDSQX32l7r2L0XA4yh5Ms1rDaPX78yb3H9rW2WYYK+xSN/FopbAp
05xUavSt53GRPdjEKAklx8nRyls5eJVPech5SpiwR1jIcNaYQbhO+RQ0OFkZFKX3jjQn8mVDs9cJ
vMaPNzVWvr5kclNCvY4KbJpCUy9+18Z/fGkjd1JNtkaRgl8/WLp2HhA8R0l//pAAp9T6mfsapqZY
jYAxyuKexW/zBgt7cKhlRp+ClHJdAelTAAI2fFfPpR+G8NdPKFZ+Jhq518GVb5DpcnLBQk9b8r/v
KPjHP//5P37fgtB219trHQwYb/P47/8zKvDv/Jr/WxDEf1Px79sSyJA/bv/6r/8MIfzr03ftZ/yf
Y9fc3sO//uuf0t+0wb/Gbsxf/9ev/7H+r//+x/8CAAD//wMA5ou8WIVhAAA=
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 7b8693cc4cf823dc-LHR
- 7bd02a678ad8dd86-LHR
Connection:
- keep-alive
Content-Encoding:
@ -353,7 +353,7 @@ interactions:
Content-Type:
- application/json
Date:
- Sat, 15 Apr 2023 19:25:56 GMT
- Mon, 24 Apr 2023 17:46:26 GMT
Server:
- cloudflare
Transfer-Encoding:
@ -365,7 +365,7 @@ interactions:
openai-organization:
- user-iy0qn7phyookv8vra62ulvxe
openai-processing-ms:
- '298'
- '362'
openai-version:
- '2020-10-01'
strict-transport-security:
@ -375,9 +375,9 @@ interactions:
x-ratelimit-remaining-requests:
- '58'
x-ratelimit-reset-requests:
- 1.666s
- 1.302s
x-request-id:
- 05aa395b3d571732ad5050891d1e0e1e
- 0d03d8038beee517067eba903c658f2e
status:
code: 200
message: OK

View File

@ -23,330 +23,329 @@ interactions:
response:
body:
string: !!binary |
H4sIAAAAAAAAA1SZS7OCTLOl5+dXvPFO6QgRkUq+GQpytwoFL/SIiyJ45VIFVefPd+g+0R09caDE
1p2VtXKtJ//7v/7559933lyK4d///PPvo+6Hf//X970yG7J///PP//6vf/7555///r3+f09envml
LOtX9Xv892H9Ki/Tv//5R/6/7/y/h/7zz79dzBEe9XLVLeL2KGljsb+zYB690UjVpgAcOROzHSZ3
Y4o3MqrmdMPs3tHjsU5DF5leo9BFwEok2lePwbviEqsmtZt5vN8k2igpPTHzvkX8eiQ+6tRCJivb
Njt+zA41tKFds83mUMWdspAUpL4ec2ZcUR7077Udak64vpHf90+XV+HDyZUSii591fGbtFzDQS9G
4mjuDk2L2/GNwkSqmc+OSzFE9HSHsYjuZB33q266qtkeBm1cM++dfeLXKzZDdFmEa1a+DBPRRdmr
qFnrG0LyK8rZtx5g2JTganEY85a9KxWt4RITPFoPwRBNfNRP8ouFh+whRDZpGTKUg0bMAjs5D4A9
tcyQfUKI75tivslcJPalwbAcdA1X++UdzovLiXZScsuZ1rc9zPFiR2f0lORTeZnbcIxlCyuDNZr9
nd8SZJ+SN3Mq+xlMTTkVgMJrQIKSbQWdXbIePh/LJIcdyQOeOA+A7PqwyUbyZuJ9jtcGSh2NElxH
m3xxaz0XFLRt/s5zctwqAf99j9hh6x5y0a+8AiVx+2K+U207XvhbjKYDNqiCwpWp0MqTl5H5XpP4
KqKOq/30hDgHTCI19UzxeXCuP56vM7OnZx+3SVlF8NDODX7ek3fcm+m1BbmsQ2JPzzAeywlVsIYi
ZtYxi8ypW82OWmPziJm77tr1t4uboOVWd1kweaapoFX2hjCBmlzi696c+G6pQPm5D2Tb7qCbwlcq
I8kSZ+Z0J6nj5nFM4LU86sTC1EC8X5w04LOiws3JfIvJ3GIZInXcEyeVZPH49Qsc4wN93pV7x62b
IUNd2yc6qJVo+tspo0id4YAEzF003IzWFGL7+qF60jrxeHSnCk4uJMR7TU4woo8LsJpyh/juujW5
7AUqXPa1R7X6yYPB3NoyhFYdEGfU426KwqUBUT0/ko2xc4RQtssQVrkpcH3MLwGPlde4pOnsyNab
shVsQdo3NKpzwMumveWcVisZurdREveeGUEfTMsQmRJhVA0fSSwSVz2D/35GxH7CBbE9i/3ZhuYh
21QGjrn2eSpwfq0N4qe5ECLqxghu1nVNmw+6IX5JSorOTTinz/AKzQQnBCgSu+HXH8G0uUoZUKbu
8b1wfCRuxaCBsVnPv+fd5+2nVlRI++cLL0P+7j7K9RGCM7ue6MJzXnlr7cCHB9QJnl9PoXlPlJWm
v7NtRzzFacSUunULqbbckr13j5pvfSVYlKIjwVMLzam1RaVvfYszc0PcTrw2DMCy9yXtwvKDhi1T
VbSQ/RnBvhKZvDi9C9jOyJqR5PBu6EddYpS7dY1nZWWLKT5rgF7rW8y8rjzGY6F+fFiUU0dMK80b
fog2azRtXx8shtcU8ATnT9j0A6eHw3SKeavVrf56q0+sRr6O2ruPDLSa4z1WuPtuereMsJ7aJKGK
NrXNdAtWqp5b7ERCvXM7fmnqDGx09wkpq6dgg1dVoB0+N7bJIzumwskK2PXEpW62p4gPp5ajLD7v
yWYY3mjykzqCPuyPJPnsvWCKrFQC/rndWbg2ooazfNNCIt8OhOCkNFuZTLUudzJn5vDaBeLg32RQ
zsSiUtL4YpSZO0LvbCe8uGy0ZuzufgEH5vrs9O1fXg1cQ9/fS5fliBD99juakfOWne7bTlA8qHe4
TEOJ2XlxR9NR9u7QVrxga8qf5iCys4Y6zce0De92LA46rtHdvfXMWG+rQNQPS4IbgM0sXr5yWpyq
Qm/PA2XEvr3N8eMPe7SRE4+4r/tevKiuvCF/7a4sjI5DzsdiYSFH7Bs8R1mTixCrIVoo0ci85U5B
ohvNvUY+SKNaqrTxFFw4h3ImGVjvgzruJK9WEMJPIMH4spGcn49HSEhuMYz1OXquqH1GY98jsnpG
RiO3eZdBTOsjWZWbOv6gQvWh2LYco3n0FtOhq2vY8DdjhWN9zEl/uS3chV/TVnIGU6ymdQRL0tZY
1jqOpptVRGh5TwqyXRSZ+IwzPwTJOqxoc1FKNK2z2tZ+/Wm9F7yh5nE8Qnx+ZcSpbDtQtuQaolVU
p3hprA00ytlCRdpAMfE07DXT/uRVKC3ciJFzgWPerGOA69qTf/O4GYkqSb/6Ee9gyMHw6y87NdZs
R3Y30ZeilyDg54yUSfuKeXJYYTRnbMbcXf0K+qO7rOF3/2xXbGPxOT4tmNHHDfO2q/IJJTsbooWl
Eq8cczSWk6jQoUtmxNl+zEacXx/15xeors/WjfLIJ/end3SeZcu8UxzzDqKansQytKoRpzLNEIoo
pffP3jOnWTPXUNoWCtlfr8duMLs3RuzlJuTrB8T8olQKfD/H0KdW98Z2FoHTkTk9OLqCumtqGmgZ
7igVwq6ClrwhA6z6F6wly1MzLobXBebNLaB7sNp4mrVdBQ+VeX/nwZe0MeBd+W+s5J6HRGDvXChf
yxgr24PXTU+eXaBM3SNz1rNj8Jre+7U+8UHDIKSt+PZ3hFTrcSRkUfOuveRBorHFs6Pzk2c0fO10
LbJtbce86LJAYzy0Muxf+wMWVzF2tIi4/O3anB22Up0P9o3J6IwrROy3sWja17UwQJHuJ4LRQuvY
4rzqAd0hIr/5yz+r6IiU/vJk9k4KOr6XpSOU2jVnof3Zd1MdVxIUXJjf+htNFx3mElpV0sjCQ2wE
vN9mEfKTaUO89KOY41ffIfXuLl4qToNo4jwkpLy7nIr7qsiFjLw7vCv3jWsafdC0/QR7tKpgZIEz
rMTYJvNRN8xTTqx3UZjDh5EeUkelJLjlekAzuz6Ch7nN1iKpc/Yw4hZ2g1oTd/BfaEzLfYViNzD/
/CNX6psN3UHrsUQfSjd+5yf4LV0x2+qdTuyesg3feUkCeyTmmD2mp5YomNGpaDvU93QPuudLCKvb
/JYLnz6O6BXNl1i/3RIx4sWmAp6NL2adTrWY3sNlj5SRenj20y9r2RYammcvEgTyq+HgLftlZig+
w/GVm9yP1BrGQNmy7/0zJ9dPR5jxucVWRRt857Uawfo0Zszaz+1uWMo21uaxJRPnneyaP/+96RnH
dX6O0Nhk8yeQC7jscIFDwze1tkffeUobK0Xd2Nw6DMckyqkm1U03jR9HRT8/8nlnn1ywIrJ+fpRO
q7sTj5A/epjtpCPW2z4ORjrpMjzLdP31X5Xo990yg/vscMQyX49oUle3GpTz1iKhSufoq2cYllWz
o/z6LOJsOLUjMLJ5EvuuWM0YX47+n/6H6S3o/u6PoUOERaMpOZOR90Tn9dHBI2zUnM8eRgLERjn9
7JSVKQx2lkHq5Q3ZuFYhBLX6I/rOM0bi3o6V2XPJUfM5nr/ny8yvH3HRZzE3iCGw30wGrlxdavuE
hGo8y4WynTDsBboxk95NMc/DbQVOLYfMl2qz4e4ij6DeZiULgnQKmLVpEjAOZcjw2n7HU3t08eK6
gRlzrcgM5vai9uFy6XW2PcmZKexzpsGiXmHmuVGfc9noZTTc5zYWK7dGAvS3AoiVLdur10q8Xeeg
ITjuDhjm62cj3LrLYL1pP8QaUBD86anUKxuGu7zpRoKnI4ganahSz1NTDLANUazHMfnqj9lfwFqj
r/7h+hMvzE+KnAR23N8w++v3qB+NtV466wdxtMaNlXTYWvDVK1q1ZpizcNZcgAZhSsoyIwHXVFSj
HXyuzN/a6260lvUFkBGdmBE/PcSVuDiDrL0YBbbKg2HSsKHFnlySbY6uguuSo6CJM414IXc7vj1a
MlJA1amuVqLrVwfgaD5vgW3Px2PzqeM3oELWZDxTLWYOKEktFBk7zIznpRZ0bPoeGUi5kjV+f4L+
E4dH0HdJTWe+PXXTq+sVSILHklmPoMlH71VRvRfVik7nlYfErYlrECY18TS8r0Gf3l0fUu/pkqBb
7cRoNGcDcKwBnSyqxVPlRYWe99yiWh/3SISzpkDfemJYemHOgvE4QpnvHbJeHR8mjdqHAsgXE+Yb
dRWL6KBL8IAqYVnoMTE6OKhAHqD55rtHPiWNWcCk4ivbkidtxqUTUlTzijLjex78+fRaNE9GzLyr
uzGVRdlr8HryOVmbUt6M/ifzf/8PIyLvUdtZAoN1PmPimDee82+e0zXniLC2tdcNb9Y5oO69LqkU
7OxOWSnDBfWlOxBL8ZRmei5dG7BZPBgm5zBneB9bsA14iKXbHKPJXrQ+amebFTPPzq2bqDD2EBQr
G6taEYi/vE98+qQ1BFEgrDCSYHa3HIaf/NYMLcnuYC0jICvYh91gvw+FRkt+I9uv3gopiorfPPrW
AzdTtW7lPx6wPx8awaN2UOAtn32qPQPUiVYZNSDsfGXeQX+iSWRnVXNP9YaZcL7n3ddPgEnWOZ34
Y/rqxz0By45K5obm2eSVkgL6zn+2Eoaby2Z6amFXFgHZfnnDtPTdJyq7/kLlj7zJf/qNRHQgVDm0
mRCH2FBBoa7BIubcEU9hx9GT20BsbzSCRYhVDJ4ojN/8jofbnNTa9TkfMOfLDn1ugafBw8ksqhh+
F9Pi9L6A+tkRYsyaHNHOQhhEJZ64zrUh4Lv1rgWQkjVbV+5ZvJlWqKhQnhij5rDufv4WpRraEmtI
KRLYxBl8z5+CGl/jqbY3Pexv00h8vVc6upelBBqkVt/89W74ynI5lKl/ZN50uYmx6z8VzJeFQyzD
Et0Q6f0e7lPpMuwro8mdUrKQ8tlwain3rTkl2T2Dd38qmDfaase3zdsC8FqPrOKz0/RPJQwhWtgq
8zo1FMMcM+uXx6jOxq4b82qegbhtdbZxr3HOd+v0DVFip3iuzUIkVm3yhmUYU2ZaMjeF1/kX9FiY
jG3hlcY82H8AzuVOZUYZW52QVsGomePpxoK+ugW8Qc/ox7+YaQxhztm70n7ziHi6piJu9ImEMOlS
2hj7OZpasn/Ckrxrkjv7IB9fW3UN+90pZTiRVvG0j3INsflyxwxUKMEYP4JR05tLTMdoVXVDHVfw
Nw/caTd0XJ1HLdRFkGHp9FygtlhRF1x17hN2Oh+6n79GD+dskVNW7UzxcDWK8Kt3yPFCRfz+8Qy6
TXyqLjXWvW19k4A38Scdkmlrsm40I8gPAaWzNF0Fyi+f1775YW42PHKhlUcDvnpCl0Gc5sKUHz7o
TRGTNLP6pv/lc/NacLbaG1IsHkb8hrg4P5gTiWMnDrGrQZZPiGqlHgVCMQ6A7tPVpVC+p5yFrn+H
q9OmdCYMJW7H5k5hQcoNHfm57MZz7K/RsN5LxJ1668dH+I9vUOXaPU2xcRKuq8XbJM4sbOPJbDz3
f+r15XFMd5ZnyB61SfsYHTu63mh4+dVn8svX81HpfMSaqSJuUw7BiKqbBofBSP/yXp9U5P7jlQx7
Sz3vFbm0oRq3FfG3dt2Ia9RIwB4XjdnZa2jE4uz14Jvqiayw0sVT6/YSaqdQMM/tajQFjyqDLy9l
v/s+336CCLShx8SutnUjpJXJYSvWmOFbvO+EP88ksCy/Zz/9m5pyWcAy1jZU31z0Rmj3oP3zM+uT
cPL5j6d+7wvxs10lRhTbLVS3S4MXb+YGQ3PIzjBKcs/cnRN1LzRfcfStJ9uA+WiY7dkYTG4gciGi
RuNDzkZk8jXCSVHfYlEuMNUeWtYQNz1AwHxw7yBLZ40RlrwCcdDtGqTO75ijrEJzsG8vBX31gJ21
RZ0P42yNUajsXsTpla2YKu98+eURLEG6MIfJQFTLP2nEjPPkxl/+cIFmYykksA9qU5/vTwPQ9Ci+
eWlA9Cy0Huh4bJn3ml7B1/8psB2cHeXFwjBFWsEefnxhvVnL8XhwDBuyW68yP55LaDQXS0OT1p8X
vRtXP1isJn+PjMeyIV9+mt/r65KDO1/NWCikLVJXl1xZvp7jnASvws35TQ3O4KWDSrv6zMS4nScW
uuDo+c0bqeCZpaqApleBdTuPcjlhyR6xdZHj3zz6SFPqw+dTZcQQ41MM1pC+wTg9dYJv9BOM/dy9
L7987Ntf24YmOL7DprJexJ7NG1Pw5iDDLucTZm1Eu9HIVAkGw9sSt0aj+PE2pD/uFjX9+GZO8fX9
RJuxkthquC3jH4/Usm15IEVSxkHvEgCUVLHAk22bDT9r7wS+PIFgdXDElO5WFE7qY0bhx6/e495H
pVbmdFws+oYJ3tY/nv7V616MuthdUJTU49/fG7/1g+LSVHRSB/P7+0sFPUOpY9bG7YOvf7qgWJIG
5gw7K+75oblDfcfuV6+XsagCxuE7D0m49MK4C8YLB8q0PfG6Usl7mbkcfjx0/vX/i4RLa7CtsWLr
/DyKj54OZzjfNYLzw62OaWt6HF2Gq8Y2WbaMB7PIazQkGfvy6Cbggb/WtLhlAVkXi8qcKs3sYVu0
Gn7Oh735diRphP2i78lqtpgj3kFhwQsZJ5I6Ydz15mIyYFPZL+KMtW7++eEvf2LbqLk1NN5ABUmd
3vGkBk/BlO0Uwjtfbog/ZvtuPO3Od5gbdY8ltNCa8cvXfzyH+dnOEEwszz5M9a7BC9eXu/kcs7/9
wt/9W9wnWwP8og4JfvuIeNm9wcvzPSPrrI5FaecX1B3UnqVfvy0sad5q33xA75umbibD4RVAWy9Y
cMvLgKdUqv78wJaNQdOjGLeoOz1thgVWu+mRPXttEyws5t83q1heDKyAehYs8eI6q8w+O/YabKRF
Q1ztYAcK0u4Ah8/ngdX0UASipamCpNepIqYx9PnYJvqI5rEt04/zaoPOzXX+14+mtpwHItfSC2i2
diebz9M0Odc9Dc4Xfc9iK8270diWFJTsOGeW17qxgrReQqDpmM7yK4qnlJz36HKhOiEb7yLoToQa
uuwrjwUEDfGXL0vol9cs68nQ+Frob/Srp2vGY/D51htheWqJsTnFwdQaGxU+r/OHLtPP0eT6tnjC
afOo2EabhULUl+vx54eotCT3QKSVvAdVrydmz+KnELGRJtAW1ZJYH/kRTydpb8HtTO9sq6LWHMKq
D2HMHj6x3OHQjQpaU/CbTYdp+WryGuCYwThKF3rLn8IcJudzRNtWr9jGEPfgt9+B86RzOlblouk2
x0+BllM6I2QAXQxZWnFUKHfMyGYWiC+v1uDrT/C0iY7dr9/QNz+x0HVvaEyeegjHyzQn1mb1jP/0
aL5vSwxkCEyRuONZr8d5goUf34LxqusX9DnC/rufKvNuv9BC9JzNfLbadFuTH647qh8y7U2njReJ
sTp8IuCzS/XH+1n6iRM0kSGj3Te/jz8eeamhYvu4vzXCvrr1Xz5zutOlGavDbY9OIz4y47RfmlMl
LhY6RmVE1v7NjL/7gQvihfo/+6Q+LbMa4J3bBJNzHzOcGhTK1rSY0T7ezcSoZYHA25KZK7cW/Tm/
2ZDrOKezbrvKeQrpiDz2lokXnnjAHwez1n/7FpKmN3PaO7KMAme6E3eb3+Lxzj9HyO1swv13vogx
ohEslcuWbOuL09xSRI7w3d8SC/za5PjSqaDf+BJzA9FuCMjThvJ0AfLLI8osWhTwWUoTHr/7upGc
zucfvyQrj+8Rf+STD5fwFZL1Zp3Eo0jtQvueHzPiII7FfbJV9N7er8ygPY2pI9QMgpJWzPrOx8k1
excW20NCcHuJBHP8WfvjX8RcsHUwtnVqwJef0/br9378A15ofSLhj39fKlrBZNqErPmJdCNb+Xdw
5+YMo+d13g39Xr/8T37hJ9axuXS/LJX3J8fafLnqFOvmKtCZxzsz/LxrPtupTWAjHz3izR+vbqzf
Z1n/6hkdn5cajW3enMHz4htWs+Hx23/JsBlnByobWtVxtMpauKbcJ667fATjIjRUJDuPiNnvOkaj
NPc1SLP1la0WDjZHv+5rlOwqBSNnuAke6+VZg+SB/vqt11zFB73aXFkg077he9QA8FMq6P8BAAD/
/6Sdy46DwJKm9/0UrbNljsAYyKR33M3NpLkYbGk0AmxjwBgbyARS6ndv4TozmkWvZpZVKlOQl4j/
/yIS1xv/3nj1BRCj84PytDSAYi9kIG9cRbTpx+Gv3ukmCcaS1UigT8V2houa74iz6e2tfmwAzom+
RPsOSrzA1K2gZAktMVdk6pSDVIP/+HUF/Of/+H/oKNj99x0FuTm/MThotbcY3zgHlzw5kejyeYA2
Lo8nwBP3RRBUDgXP9IIG9DA0CJJwMUy1opayKPs35H9x4c2Fw2PosIyL2UXbxUsV9T08iCOLDpIq
gSWbbAYmfBsFrnlm9GlZyx6iydKJFshi8b2+Li0Ar9okwXKKhoUqIJWi76Agb1EQmF3uZMl8YEVE
99U3WHS4dtDTjCVY+Zc+0EMu9TDHrxKLRXaKp+HNdIBXjxpxbsWBjkcUYuDeHxZy7vynWFLfswGe
hRNJhvgFsMtWJ1nM1JIE++QD5klxElAIbBUw8fhoxjUSbXgM3RUFHUhjGmqEB3PXV8QUTr1On7eZ
AxJcRuTZnUixuHNT+LS9HTnOo+FNHZMm8BbGNp4GwMaTV0cnOXu+hIAm0dgMg5z48EwkjajVUfH6
LplyKD75EHPY+eiE7goDPiP4JUVYJfFnLsYT/GprgPSw/MT9+W5D+Oy/MzqQ8d705rOPoFSQK1JP
tzqep89FAFBacuSzYl5QYGi5KHOtRZxBFOlyERsBmirnkEt2YwB+vUQOfqRqJtqryYuZNEkPbRAd
iQ32CV2Up6hAZT3qSDUfp4KePk8J+rPxQOHgi/rKslUuP09FHMgauTXzied92Hi7D9H3zuqNwmd1
oZlVCDm8WenT12hOkN2NDZ5zlOnzyBxbYCZQIGZ1KRpsL+oXLMsbBntRaOl3kfUSJpwGkA8OuCGD
XAagPX/PCJE3HWbh/DhJRRPnmMsKsZjHh15CKKcLcmTjWswpJ6bwc73f8FzCNl7u1qMC4TA46ODr
U7HITpdCO+sb4hi2CNbMHyt4/5gcUauU98YIHC6Q2vvT33qn6Iw0eLfVJ4bjGg2z8Wg7cPZPF3SJ
k61D53rwYWjrD2Te6ktMfusnufSYaKdL4c3u+b2Cj1TPyM/9cJjfH/sEL41jBTwjTHRGzq2E37YQ
MYxabSD2SzGgNdKWbPNbECeqBJnD7wqZeNo35G76q7Q/S2zAXLq8WNvwDgEfGBGxdIGntMEthIwb
+cgZxCsY3a/2ZdvT8400TnkV80W/KLA0zhNyapaNidUYOTgUgR4Iw3ko5q/hCKCmCkesQ0boVNxX
CNtjvg/mcXfxFiUbOsBSx0eKtneLpc/cO5Bh0qNgvltgprxfQq0KFnRw2PNG0DQbjO/6jNvocxwG
5YJTOHW1TxS/mQGGHZfCVDpZCFnFQufifu3A927nKIZjPZBj4UWwP2cCQiJEdJ24pyHzdXjGvMDx
w0gHVoHMg4mIAXR9mC3h0oNXpV2R5wivgliEpICv4zPxr01BaXHrA3i8v3N8Ai6nz9/TyIMuXVfi
MhKN6Uc/1fKxDZ8k4IdEH04DexEFQ+KRsVsEr/9M1zskVOGJWgOuGIf3LYDxUzoTQxMJ7R3H5yV6
TbxgWNaimcMj/kLu9JFxz11Knab8rfw9P9L603sjYsQCRx0FAYNzVIzms4qgMwKBKL3uF8PtKV4g
nG9P4j5CFfDvx66FXyXYI0O4m/F88kIbVmnloljqPR0fTjoH3zwPgxqGX32+m4wtDUzQIju73eky
F2MEfbk54F2FzGZWJqkFlkfCgL1SZuif968Pw6N7JK55vut0vEeG3F6oQYxGU721u1UWxN2hCDBD
NTCI7GJDhRgxuZSZ2JAsKxKw8OMXbePnUb5ke+BbMyYmSyq6LGvyhV3wTJB+NS4xbpFzB/ldMZC2
z0gxt6fEly7Vm2BsGyewAjGuYJGJR2IkfKHPte8pQIJBgtRJtAp8/lxteJWfTgBzRi7mcucwcN/w
DXJ72S4WM+MCOIDPcRu/J51UFHLSdv8kCMK7PuFnX0liabvoUL1SuhTDWQDCTnYQulxkb5mLNoLg
0D3J4bmvC2pdGAbcOjlAxri/NXPNVprspscPUrv8GM+iK2ggU5pXQJ/nm7cmYE6h240tyZZ3pS+1
4tz/4r0nX5uid5h9ClyzD5HSrO8Yh40fgQLU+6AyolHHtSucYDukBdI6f/aWlWE7cG+uGGmPdKTL
AmtDqnaqhZTX0fEW/WAbsEnMA57lvRrTgQYrYG4XgEzwXr0xuxgYMrGpIXv3fQ+dkPg1eCW9j4ox
aHV6Ea421NbVRt6FnYpxD68JrMbgRFBYX+lSK+pdzhDjb/lHi3cfwT7BA4xScvBH3VvHuIngpdKy
gIXKId4T/ePC6sQbCBmPT0yninQAhswreH9DWR9d7mRAFMUIoau6gvmAVEua2LNKgkW0Y+4uxjZw
ghwSJXrb3kSkLhcpUUKicy2l6xgPEahD+CSH7XpYdxgI58R0kCpBnk4/PXGy76dAkMEYL0dz+oLn
bQ+QKQ+fYUkOIoSlkU0EqcpcLNr6smGflx3ZPg+6LR8BZJwHZMxHpZlbcZjFLT6i4wuv+tJMXx9u
egNdeVPR6TGoEhj2VY4cM38VOLHjBISnk4xFATTF9vcBDE72B8u7O6JdHom5dNg7PTqW3L5ZcQbv
4Mh+JqRZIzfMb3b+gm/HnjAz3y1KRmcfSIdj9MDV6/jx5vl1SeDUwF0wf1JWnyb+5gsA+B7JqPYc
8DnqZ3Gv+GIweZXmrf1zOUHz2zPI4x49+LSFrshRVoVI+fZus/jte4WV3XXE5T/BMN7G2ZeesxQQ
RQ6GYYWLukIB+QTpdh2Atbv1FrBihhDHzM1iPybGF+78xkABQzU6pt5nhb0g10Qt4lfxaU9bHadf
LOKpc9qQj36poJenATJx+xzo+zvmcHxXZ+IuwdGj4q4Z5V8+MGM+BOvz/KggO7925KDiUO+l47GG
eVFOZIv38foq2ot06lg/GMEBD3/6plqEjDjD3ND1W+wU0PK4D97LnHprF0e9PJa2Ta5mUxTL2UUl
kGHa41fBKA0/qYYBn7MQEOWTPrye4U6+LFp3AwX2ZA17mK8zdAuRII05RsM82oUBI38qkbftp7nV
xQhEIe9hYfc9NDttnWzYkfcbnyfg0TV5n+9QZm8Z8Z6nVac4tROocucPOiqqEy+9v1OgqzwbhOSi
pwt3vJ8g+wUYP3fPc4zfX0+DwNRdZMPKBVt+84GVVtZWkavi9SbYOXw/bZ64ulTGc2drd+gWaYYb
t7M87tP4Gnx9xS/Z9PMWf4wIvnbjg7jC1HnU3cEAKlYGkNq0X33Z4cQC72Y8osdeEIrRYdgEZM+3
EMw3fNLH+8nr4P5yTwP4xcBbd+YkAfabpkiR9894Hh/eHe6hpRB7YFR9PnauJdZU44jrXXfxtMZ5
DR/WXQmkAAkDdpKzAm9sMOC1808eVS5dCh8hdwzaoum99RL0gVRoxwPRQajQXSDHPDyywxQw5r6J
1w8uA2gcXY+gT97Fq6m+AnBn/Bo5s2pTqkyOD7wupPjzGsdh8i4+B2nwTIkWfq1hbwPhDuF1OhDn
fqQNxZcbB88q8yAB0U19MjMYAJtISrC7zP4w+rjggcqLCvnT55tehKM0GEQFL3/gmsnmYamvZ4zF
5z5eP621wnHOPLzPasvjDhK2Aftonpi5CiZYJldwYfT9KKQsr6xHVJKOUrJ3vpjpnG+zUIX+6Ruk
8nSj8aPQwmV5QWKdJKXgisR34aieE3Kc9SCmlK0qORGJin77cdr0nAS6ww1/L21C5zHhNci+UE+Q
2yjDqid+/htvFD22Di9cq5uf4J1gBHMbL573EYTK0hFyr3xVzJ2bMXCLX8T0M1H/5vYAgWx2iNgg
eHhbflSgcSRNII3ls5jsuTrJm14gil4p3vp8tAwcTrGKgqtg0p71lF7O27BBRsP5YNnyNdSm4Uq8
16UCn+kjRWBsGQYpIbPGtAUHAQpa9sCM+NwXq0yzCAaFLiFT5h4D7p9LBOZVmwLYkCeYr7OwQrVn
S2IeV2mg+ZpIkAZNGuxRnhXT/FowdHVDQqpeXOg6m7cIrDv8RJ7UVN7cyRDChXNiouepTrmGpAl8
Dv4B73u+GJa7yFXw7rZCwAfH2FtzaEMYJYyElBztdZwAIYWOYepBewx8fXm9TncZOeWVFI5gxnul
BjOM+sMn2J3DeFiVOrrA05pdicOkBt2VfryCO5U+xB1LNf48lu8K4yD6EhdfHDAfO82SR+ljIL+x
Rn3cCbYLA2MuyRm36kBZf1z/nnc+34aY5LBOZEFdD1iuYBfPBp9AKKrnFB2PExloyXcWLDJwxHN8
pfTn1+XqbdbEiKOm+E4800ntkBQoy4ZSHxpByn96hah6VANaKrSFqnuvMIT1HK/RFGLZf4Vfcowe
oBjjkOXBfGJyzH2/J2/LRzPcFy8TOfbJHrhreRMEFRsu0b/Ws1n2B8WHrBPpWMb92EzB4ZnI5cN+
ksgauWZNd9ACWzxB3pdqBeeeyQwK5tMR7RqdhymQCw44tfLGXDKZHk1dIYfzvdDwUqW8Pn8NVYA8
sV/ERjsCpvP9m8Kvfu7wWuwpWB43JMHz5Sij33qkPz2M1tlFh/HMDfMWD4UIRTQQz66u//wJvH3q
15+eHDc/Dxyrz5HJ77piAejbQT7JFqJ6o9yQve0y8KPPGTq0BgIbP0ngz08ed3dC1+OpLKGoSxNy
PxZTLO9HGUCxnOqAaY+avnyaKYebPiXOS0/B+uZO5U8PY0lpomJeI9GFhBWsbf9ExVIx5gh5jh+J
eXq86YivyIfZABYsG/SsL6J3vQAOazaee32MqegnrvxdZpMk2qHVJ+rZMxhL1w7WB6sNvNYNHaz9
U07ivbPq69BnEPrf/IIOENs6d8E7Cz75LsFf8RECmqzGCSgdz//55Q2MChAevJmYwvWuj5OiJnJ4
iuSAv9SoGOmwV8DGi4g57LmC4Ho4SR7TnLCEnq23pGzlSr/4LnXiidJO1jtQzv6OuPag6vxOv1zE
LX4QlXcHvVeuDyzt43NPTDtoPFrE+Qo2nkNczjgV+Mc/Nn1HXJOhYNqvrxPY/HqwjUdBL1LXS5fb
nUXBs+LoOnexBbfxCnZn6RPT9V5joF/rZ8CHOl/Q/nL0wS5Za7ytD2/NpjqBjXcK8X7Tb8tppxnw
qB8DpGINxmNYOxX46fd+py6AXMPMkGg6cyhO91/aWZdbB5o9XpB7Y9N402cGbDkvxP04Hz0aGU0F
N39Kji8TxmPt6wqUV40Qk6bHYv/z58v5m/3pqa+Y2j68GscrZjd9vtqL8wWOdDLQbdO/2BKLHJa5
ToMdc9vFi3O4jD8eFnAjfg8zcs53wW6UmQTnee/NxIjqH9/Ch4t8oCvdH3zYJccC+SHwwXyqjpxk
KBHAa8cAsDwTxgVSA/fIjI3OIyIr2tBabwPSFzMH3WP1XVhKFQ7W93tpqJBMwm9/oUPQDw3tHNzC
pTsS5GYO1UdXAQb45UftBrx4z79NCzY7L0e61HveTkVXToKGqgbDxuOoqAWj9NPPrPH4FF8UnVw5
bTuFHDzAxKSTvQ4e0sOZHH2g0z2rPRLwEvYBlr/Vja7CPWTgcNEb3G9+60u9rw17UInIuShWsW8E
6QKdDK3InKLUW2QHp/AaPCOiL3getnys/PgfsSqXiafH8p3BNp/El71OX37x6NriJHhdDjxYxY3g
f94XFaWv1wNQLr0w8LNnr3g907KZtueD7v1mBRSEFV1fxXiRbJW5bdezdBIHMwOeOOGRcyvetP3x
vPkEc2KF46ivwzrlgL/eHygIbNubHcfgoPaW4+D93Nfx9HpPDNzHWY/ZdpkHfH7oGD6cbvMHTRHT
lD/f4bvBR0x3x8+wBrIcQO81Fkh/LK+C+tIxh8pHfhH0BMcYv7nTHczdt0JGMpl6P4DZACdTEJFz
hhjQvEcllCw9xnDT+3i8CRhufID40XRp/vzKxm833urosziir2RQ6UWCjbfwBLccZB4wwoBl1GEf
am9ekDShRRezr4fxteQaBIA2W746FeAz9gZsxrTd8r/icaI7K3JMEpn4Wz6j/KkcQbzTDaJnH74h
qVIzEEUhIta9s4Z9i2oeRlkdEnUmTrPshGctqccXItriavrschcLTvpDQoeDsw64DVNG1FPZxRfN
cRr6vAkcFG5ujLnjXqU7H+98yN4ZZ+NFY0Gf3Cf45S9kdfuhWG+Z1kH/e7ls+XTW1/WuJnCC9Bss
ww7TWXtV3M/foEJ9KwOt1qkCwVDtkDGUgNKzDUcYp7W96csKkNY853AXHb2NH0vFeEUShKzhnTE9
0XhY4FVQYGCeuQC8LhWdI0GUYAWXHvlvYQ9mUak7SModR5S6KsCUy7IFKzZliVYEjLcAYbWh7ugd
ZgouiOdD0SrwLeYxUZXJaOhB5Fb4ka0Dsn88jYwC/sVHLOkSjOeOkhrAMrpv/uKp75zDBcMLyBuy
FfrjHt2EBCaV5AeQ9udhYWIwAyjRnCD10+k09OUIOtfFIQfVBMW6w7sSalF4DMjGxybYRYw0fXqA
LPzICyo1fg0CxvBRAANj4HfmJMCOKAhdkJ/rk8H1PPwuq4nQM8qa2V6TC9QmQyVZO5nNd4ArJzf7
cfnTCx/5cOIg8aMS75d35S2tkfdQqEIdN9cJ62uvgDuQ9ocuAPnWK/bmJwh2DjsR/+Xqgzi/RAzP
u9ZBm57Wd8tafn/xKdil+qP45XMAWcEmd516dLetP5ns2iMpPs+t9zpMOxj0uYU8VEI67pmOh7MX
xUR7sPWw/Oobwo51ArrFp+EaZhZE32rEDNnNlISZhuHOfxrEnG0xXrF3reA2PvgXn8ctH0iXxrPQ
IUlWj9Ze+IUy+8iC1T7wBV6rlIfk6ysoOe6fv/hvbx3j2s+vgR//goeBFkHNHNeh5YuiAmmQM8iJ
iRrvclk2pHDJTkTDt4RSIXlJsLi9Y+KxZ4/ylQ07ENxeIXEJHeI5nnsX2jmNfvwZUC2vNXi9ggfm
pHyi6yEPT8DOlyhIs7kplrvhapLKfGossc3Hm7yLwUHiTCYmV3Wr2K7JLP/qKfqadfEfb30fGy/4
xZ8VRRcXnsEJITf+5h6VGcuCQ95JxAsrLqavlbchO2u3reM2jqf4pI+/9Ur89nmk8xFdR9DpvY68
1joX9NcRYPs7HJy3+sMa51INeRVp5HhmkniWsJcCmwjKH3/Zl56jwPdds4jSOOGwItsdJcubQuIG
Vt2MnM8JAJ9rnRyiQzuQnNnz0M6+DdIuHxbMH4IZGE2UbLyv8T6PXLpAjZ6rYB/eA7q+uUsJpK4O
cJEc1WHc6gnw87AbcgzSV7HOV8GF3/YqEqevEaVLx93hMog7ghzpSymXnhgo3OyYHLZ6EGbcAwYt
frh4vuHZGz/TtYS//HSkuRDj4O3zcDn3Gbl5Va2P5T4rgSVNNrGfK9A/+FnV0s+/WuyzadaJ+1hw
/lAUyLOO4xm+xBYGTXwhB+f49Zaff9r4OVLctImnk/qyIHwdEmLUVy+mdDj2MFzOJ8y6TTVMidxu
+UeN8Z67NQVhFYcHeAgcZO4aCaysumN+POhXj9VXdzhewMlR+y2+R8M6qb4FQuxXxJXs97Ca+2yE
O0eegnlHooH89FoVXkt0yGpL59zHzoevgDGJmY9njx6sxwrYx/MZfPHlQ0dFUBS41UeRKVwZnRSP
3QiVz+VI/F6xQHt2OgsGblmj28SmdCWCdAIX4+vifdB7DS592QUeuDzR0atqb72QPQ8HQ+KIv9P3
MR467Q6ig5qiAwqfxV89+ZeflcZZGizT7ATX9ywT+6c30aO8Q888Vmirt9GluG/54r2yGGZsq89H
iV8h+QbKpt/CZt7yLeCwYhM/Y1tver0uJbhoFiWBbcyUmH6pwW19EY3H15+/amGdfd/B0rIDWLis
GeVRXijShDX0RnE89GDj4xgL1o7+6luw2ukWplfjUkzbfv7Vi1FGNXVYNn0EeiF3iZccnw3mc2WF
tR/luOk5Xp/j8hjB6n4akeE+7z//2wIh72Cww1M20OPrhKEH8uemr8uYWFPI/fQ6lsZSLXjP905g
83NY2vgqBwywwh8fUyexK9brGxtAdcuKIOn1ajA/izbc+Cc57L19M9eq3MEiGjWSWq9W3/xMC7d6
IObZpz7g52fN5f+PjgL+v+8o6AMXk8OuNz2+fLAukGl7IHci2oC+cGHATvMM4sPSA/sic1wos2hP
3JDdNzQJzjOU360dvDxvBmNxdBh47iQVz++spTRnyhHw5O0FSxpeh1X/2jlUrmWHzJs30ckBXwu0
dnonttc/wfSp5xHqcagRu67zgryZiIcAdBdkIDzq+GhPPERYkHDf1uLWExszUHy0Kzq0/bsgj3sM
Qb42CrEa89EslvetwHi3LfwkYaoPQeZpIDhbJ3TMy0NB70xpge1+SBp6XUEcIiRwvi0nZH/NoVhL
YahBwhE1uE6m6lF8D2d4XKwEOUUdghElWQRfmhMQo/T2DVnMdgWVkhnIrLxjszy+JoYP4WyhIBCn
YZw8HEnUe014UTOl4a8s28JjCkL8nnqroPe90suubM3EM1gCVvsZ24Ag2AaSUvseDvqph7KYs0T5
clExB+f5LlVR7SDT8MJ4YSTHgGhnqKgA7BvQ/bmR4LIs+nYmzAPkhpME2lkUItdhL2AJh2qG2rWM
AiiLIl2v/WhJShMXxHmz94LcDsoK7a/IYrE1a29dL9UJeDdjwOK5Xptx8roTqNpMQYehtwB9MbEL
smTsUab1Pl3z5yWVheNq4qXlPt4EJecCVPX+IEbsicN3ED4pnF5bBwYpM0r2waWEqfXE5MiVjT5f
jDMDgn5iiLHzEm9gSv4Cr1GDAqmvTcp/+mcr3751i4wrdgtyu5cRfLoeRV7J+t56WS4YdLXLEj8v
l2IZl8cJ2E/TQrob9h6ttzPk3YGFAXBYTKehni8w989MwJd91ExZDWpp2jNLMN7YuljkJZnhOrzX
YBrLtsDi3ook/rPGeLlx34bS81gDcCyuwdKFmT6KRVvC67fxkftgz8OMZH2ETzuF6HDsvZiK56aD
ZwELxF9FUMz18IbwfG92CPHp6K3Okgvwc7db4kw1pqu35C2UdxcGyydx7xH5XDPwAseCZJ4pxmMn
Kyd5H84+CvdhAujtnpxgkj5lZJpeOCwv14BQv90dosWcFvMd2fVwj95WsD5CPKwiWjGLcokhRo/f
wzo+YA/rOR2CshZlOhs3swRfxj6jw6EfwKovMQ8uwpgTrQ2PdO2JnIKtYh2wQzoNMymwBtgCvZH/
Yp8eNQ9GBQINeOjw7btm+N7zCwC7IsL8ziyHKV8lCPwvyAJmqxBSCz9W2EkuDMZvicHkDR8MD1lU
BLzu9fqkajwHP7X9RKddeC9wKrR3aKiligrIvvUZHXVOnvZwIYGW3obZP88zjGfikmMnxmCFRPJh
DdMPQld6b9b40jIASZJIVModipYmVwYaw2mHect7U6plhgRiSQqRvTc/+nIYvikc3rJJDtjk9BG2
lxLAdxcFu2283x6ZNTnnsj0eBvYbrw+W+cJyrUcsfOurvr7RrpYA217RYTFjOpW5FUHkGAeiTpyt
r9llTECXOgrylLr25snrIrD7rDcMl/IYL7HX96BosULcN5sU6/3BcOCS4DtxOXYt1omFd/Gbu1ek
R6EFVoaIAlSv9xLZ517xFkFyNThYdhyIR7PTf+sDWFn0Qm5Qf3Vav4gFP4z7IKbgfeggMidFlt9I
CkS5Hv/WG7S9KCLaGPrNZIJ6lJ2PxfzF79UKi4tUuJUc7C5eAJY6PybwwVeI3BURNTTDt0g6hsYV
xcfwDWj1tiMwTFTGyRv38SqwkvTLL8jR6nO8fi+fGmpx6Af7q7kfKDlPNsispv2LT4ux8heIcoEh
ZuNN+uyeRUMsSqwFLcYWoOpjqWC1Ojw5XsQdoOeDq0n2yzxg8RfvhN2AwdpAnQSV6A77rUMCCKiF
ZMsH8ZKutIUVX5nI+vRzMR53QgtvQf1F6o37DvN3wBgcVPNMtCxEYLlK1gjHaaHIOvQ7Or8mpZZp
/B6wUNdSMZRvRZKtfVQhk/e+xXx4iXcw3O0Tuesi0Rf4VVP5WuF4O+NaN/Rt4gQAva2QBrDQ4F88
EJ1iDOAoQg8/+saG+33HBvSId8Nq5rYGlee9RRrFIqU0uBrSEr9Z5Cfl6tHDwfehJt6P+LkPEzqf
uMwAOnsCgTyLkbcW6sUH8NElSEvwXR8XLrKk1vXOCLWi0uxPmYsFlkUN8hL2WLQX2S3hs0wEcjXM
t742/bf+mz8j8QS6cJLWQ4KYdhsfApahnnOoDxEb/PbXakiKC1+8YyL9FRo62eIpfNlJggJFRAO1
WeECd8taIN8qKZhl45RA62qW6OiK+2Z1w2iGmlgeicqGcbN8JN+HxuEkooAVu3g9qlEOruWYkmAv
vn/r7wT2+5ZFyeDtAA6XsIfPvFaRs63vZe+6rnRP6zvSjbCnQ8TcINzt5jKQVDb3iPv2RqlKaxcL
tBY8vHuAHOqPUEHOwpbN7O0ECTLni4i8RynF9HmwbeibVouUS9Y1NLuffeigyAmsxVOL8XlTDWi+
zFdQZdk7Jtt+gNKnuGHq4jNYkqLPYdiTKhhq1isWvNwhiMfpiBBLL2A6FR8NRp30+BvviVPvNkjG
SSd6irlhCfMDBz3TwESROEKxlFkuzC/YI4eLmRVrI9QdeGOXIjdjeYDtvmthBVMZ96vpeiPazaff
esN70Lcx3uIZWAFUSLzdH7m/3hi+WflLrIdnFPSJCwy/mlsG64qvw+/6sH+zDdHE8FvQKy6h5K7g
gwXWPACM7Z6HyV06Bss2f9RgFwUmneQRW+trMOuv1YDeYvTEb9jnQC/BzZYCLBpEIVkz4KP94mTp
c70hRGhRYNJXvXxA0S2gEz4Ni1o0gdw9WBHvp76LR4ELXZgp40hMxvt4lJYslD652wTzKXvTRXad
AHa5owa7bX+uO0QT+bFWASl/62+bL6DSMEQW8Z6Upm+Vg6E/dWjTLx4tg7KCmDIdOnimWCyxV/Xw
UWUOQiD1dHy+jD0cJNtFx7VsmlkuGg6eO0FFNqh5ui6IQnAVxtOWbz26vF3jK216jahKVsVLmx81
qA5xHHDUS5r1g+Tgl39JYKSyvuyeZwj1d8SQw8m8DHPW3i0xYSQ7EESzHz46GBRArvSK+bDnvPHJ
JR3km/eRBKk4/uVfcLaeAo457waWLhIjOHR2QIza48G3YRkNbM+Lg0780Ckc+hW2qZMQJc3eOqXl
nhHlY2Eiffv8bJwlBeRdoyIzwxX4SOotgORFLwE0WBNwsD3d4euURgHMy7BYxOWcQ+9lfIjXsF6z
7t9WBbVneSL2WF+a1e5xB3S19FBgiRiMDGh6eKzBKdjx/cVbTI33gf08WIF0rfth/s13lJA8WFOu
1pf5q/swZyoGWR+vbhYoqTn85Teah6+GypCv4eq991gkrKwTWrIM8FbwwHvamw297+0eVkHtk2NU
2sMi5qoAPMciRF25g87bPW5/+gozleg2Y5/EFdTMe0pcXJsevWU2BxXx/sTPPuSbNVSvK9TU8kzy
kM2GPSx5DP2d9cAwZg19l2vUAs4qUiy9a2vg/JvvQ+zBidhDLRZUfRuMfMoFjlws81TMhrlAWIxn
8pcP19auc7kcsxdyFzYa8GEpApDY5IB54qmAm8GLh1y4fjFcxSJes/AkyJs+RgaPzYG6mf4F2/WR
W7KpN3Fh6sPEkk7EUvu0GdmiqeE3ZuOf3qD7cO9W0LyZbwwrttbnMEnhnz+IV+9eUOegC+Bb2xnx
9+XYTEbNpIDzXg3RZzwXa6aeOAinq0sUi8uKEXKnSm4i54aQJRp07S5fF6YJXpGfiA9A9cfiy7+K
yc9/4lP/SmHJVxNxQckW2HDtExhYWUPGBx/Awrq2AEePVYOBY/tilZFkgJ8eSxR8BLOcnHJ4rsat
w85zCjoGuQaD0ELE5szPQKsXyeErddwAvlhVn2/t2YWJP9m/+D+MlZGM0Hodiu3NE+n2DhQ3gUcs
BkSrOCXeO2ROZBNFSwDb7UwrbvP+b7+JD/bRDAPOXen9ZieEzulM+z4pangtcYqcg9kNUyMdXVi3
yUjKlNXpbl3SBDYwfQS80qfFcq1BAH7zc+jMc7xeHvsVHo9GGVyI+S3mKklWaNBoEwemUizJUN3l
LZ6jlPeUYtq7mgtL//wlbl+/6NcXOgUugHG3/foCZPP/chd4GuZ4/Gro+JoqULfpiJQg64vZlM0I
RpbQIjuvQbOWz4sGK9eR//IvyffqCWz6EWlr6AEyMFEAH23m/uWrCaqJAF9JGgd7qW83P3hjICja
G1H5kBvINXPucF1WEYu7+tj8/DO8ME2Eed6rCiywkiA+y1QIdhlW6Hg3bgpAZ8siZtbLBXma7xNM
LOFEtopQs8WLAGpx7OP92pvF3/5jD8cBmb03FjPjDTOQjkWz7aejPr8nJYCSU9REy7Ecj8eXUMHL
vcnIoTcTup6EKQfyo3ODoEkFQDe/JtPbuiL3U1t6LxcDBzc9j1QlU4q9cD8FwLkZLDk8TT5ewHI2
YJRLFQmitPCoix+uVOH6gOytgrVKrNTBBcETUVou3vRSW8O4J37Ayul3IPNrFICfigXSPK5pqI2E
Cg6dG/z047CwucLIdyO7Bvtb34NpWgUXJgmxiPMy62IOuOzy07dE24cuWM+X8Qu8VXwE/MnrvL/4
or1jG1c5l9BlXu490F5lGNDVY+LxeXOMv/jqjyLUl2Gd73KckBPxc/GhUyMzOumnXwKzVAB/UONU
dm/WjhhP7Oj8/cHwQJfvBlKuHNfQONNyQOTlTFy+1sHYTDYHfv4BRWLTjA1XniAfrilRJc6ky1M6
lsD5GAzyYhZ77ZxEkXTITgXxSTnRwQwyCL+dfcEUhoq3dF9/BbtwrjD7oDe68lkwA9OL5mD/MXf6
kklIAap8vxDlkxkxNR+CAMYz5bG88aTFGb6aEHbCh/z06hbvmN9+xIsXFh41H7ME2q93CtiF5mB2
ZP8LOmzL6PThVn3JXauGt6D64v2hHyjN904EzvfnjvhS6cd9nZR3wMSdhncqbr0FRRADfXfgiIU8
C+w+khFI97W+BGsUnsDqC1iTAk30UJOEXTHjJO/gtR0TVCpl0tAdZGfpHlQVOk+eF298YwU3JauD
+cFtZ65q9gTcl0GJt/ERcgiyHqLFUrDciJxHC1x+oaufVGLM2Iqp/fYVKD+vGq6VMNr0whLB4844
o0tmYn3l+l6R0vrZI/tjejpnTMcKqK97gY638u2toRqucHden5jG4dtb6wfjg59/K03W0gkLGR9u
PCHY+NkwcOZ4B+V4fgVMKE7FmoUXSdr8RyCEJgb0QOYeolqAyFnNSv/T4yRjavzyvBOlKlpKebfM
BUJvsdLHR1tycNMrwfmAm3jw314uHbyoDOownBvKlEwOh9xFwcvsHwV9mO9W2PQlCT6iMyxB8Uwg
DK8+8sNyjV+qxvBw/7kConc48nCmXngohsV34y/15idBC1fEWMg3WJNiGa0WHC3XQQaLjYEuzDWC
P3/xp9+LWhLgA1chOhj9WKztpb7DsJZ6cmj63luNMB6lje9gfvGe8XL2+gTW2Hvhne5FOqe+pBwK
zmogx6u5YjqDKoAp03QoMMqqmY7RTgObH8NyLPLN2B3tC2TY44Slmt0VGKmRBYWw4Ai6pHOzDv0n
AiEjdOgUcjuAR8JhKIG2JhoJR32FrBTB59fDAd702Ty2OYTnC5YDrvZSMD/ahIfvB0uIduJqijf+
BMGjvZNgSvdeMwfhBTztBCL0oaXX7oywgyY5jbgtvf1Axntugc+BvQef0VQo8YiggY1nIFs0+4Ye
9r4BL3mT4tbG/jDvjLCVg3mCxI/Z1tv4SgpB0xak3PTDdFlBBLn960YUObzpP30NujG1iAq47Yw0
Wi+QyusUiHp9HvYuEnz4ye0GhRE3en/+/9w9KXHmOhhAljnzj58hZc/N3mybS/KrIAbzl1vj5RNm
K1xe1Aj2Ru/HFECGBzkcDyTQS7XYFd8gFZzFgnjL5/FKhcqAzdfJibrx49V9Rhx0nIOODrDX/8UX
+WUNAx71STOzxkX5/YyFsgbeuE/CRHQWAxK/Y9WC2yfX9M/PTUcxK1aurxS4vBYDC7k5gdE7+ndg
mwc/WLlwiOcxiQS4X+YDCudwF2O8P/A/ff7jgfQXL6B86I7oqIkCxVzfaxDZk4gCrXx6s3k8XsSk
J1ogGDVDf/4IWCSq8fdev5tFkhwM98tWQdyzAAyX4OzCdBxJwO9MOGBXwCk8W4KFmUA8Dos6NCcQ
SEAnfivKMU6EdobXaoyJkWGXct7RuEN4vCIs7E1HJ2bwYLYzzlwg+PWtmb9tEUlOc7JI4ZUl5ccH
94WaFwfb+FbNOgkfBXZcYpCD1LfeOA+vGaKPoZFQ5l4N3sYfiEvx2vT+21sNyXahdOgGhHbp9g5O
4YXF5+qMaFtP3lxO6gwCDIyg3+odq6MWCuTPc4Yucs0XH0eTW2njAcgLSxjP0GsNqJzvLxL0olPM
D64UII1fA9K58FlgwkIb/OZX9M0XmLSa6X9+m3g+GzQ8yRAGpXBuiVOYhvfjT5Bh0USQm64Fz2fB
CrnsVQfrnVPorsqPXzDU9hGpkHsVdDCnEV4hDrFk1V6848ObBGJLyn8nOAqq730Md+f5iUMc7ujY
cEkEF3NxtvhwGuaAe1zgJNIeS/u69bb5S/54SbfVZ+ZqUl24AOgSLQlPMRXKfQJV8Z4RnYaaN4nL
LYfZ/flEZojVgY+EyZB+PE6nYe3hIrxE0F6BvPlnfdjj3XQCoyeryHh56UBtnN3h+lkBZi2xBStz
ON5FgXR7pN5DIV6/RNZgbacrCTrRAevtMuQQ75k3sUXTbvjT8ypB/XgAwSJxLzq7k99BZrrwSNW4
YOM7swCcCAiYddMopnvI3oH+PjHB4NSqt8+ZBMObW3+weDObYT4mWQt7xv4gX2O7YlrVewm39UCM
FLtN+fLeNSQUlhvP5WJ6O9grdF0w413qkWJuPMKBxkjfxNp42XIEzxLqcmmgw7l3N57Q9nDO4IUk
Z+/qTacVVrDDrozXTe9RFKT5j49ioTSnYgxlL//zC4sXAq9X5aPw89PkLHs94F43pYQphye86T19
qPfKtp+JiJk6vTTzkys7kCl4JFrBPb2+H94a/PF9T2bfxfJyfQZufJP8+PPOqhkFmtmJBGxGH/q6
3wedGHXCI1hHLBVtfPNOUGxaQrQz9wQbT+FhkZxXYjRepuP1UkUQIwYTY49flHrBQ/vx+WBvmyJ9
HoZvAl9jciKW1GN9rRHjgmfkLRs/29Hprkl3GN6lgXjvUtT7582xIHNodeTEdaxj9rFwgHl0CtJW
LDbz2ubar74YfG71Ei9nUPlwDVeGHMq+H2iGzxGMLSFH4cD1A6mZ4g5DbnoEbCLq+sYbbHnKGB6v
Uvgdhste7YCjnzxkPnroje5ZtADjtUbAIex7u2qVNLgUEGFm45Uz5C4VdPaRhtQlPA/jyZwt2Nhp
TxBIB++np+DLT85I98PDQLyD3sHHtzohfQy1ZjW/9r/ih/cpLw3ZBacZ3viqIdo1JMW631stTKtx
wV+HvVDa3QsF6JPJI30I9YJWr3f+8/fITdgs/ulFgE7THn9udViM9lnMweYnkepzI+0OapFC8qQZ
UY/cpOOC3Z9Ay6UXdIQpE48Md/EhPBdHhB6iWnx+fHzjQZhrvbRYdrlWy3e+uqJ8ro1m/+Ol2/wj
y/YOBeV3oyJ9GPuBZVo2lERv9w4eax0QlQlpQQYm96EjWxLRZHzxZsEb8S+/EuvRR954Ogs2TNJG
Rt7m95dd7lbywTykCIn02rTRpCewLZMc11L4bZZpFWzYRl4c7E0z9zbeysCbkOUBY4tBTKugEOAi
UxUzvfgpiJ/pKeT3bwe3Gf7SsT1u76yIqjdRN76+pkJbQqUJC6RpXNusbt9Ff3xpJ/T7Bh/UIgG/
evD+1tuAs00x+flDDMxSHhbmq2qyqLccQl4aDTR6a3dYGKNJdC38FLgUmhrsPwXAYMf2zVK6QQB/
9YRi42e8mts93PgGnq+ZBVaSHfD/fkfBv/37v//P37cgdP3t/toaA6b7Mv3z/7QK/DO/5f/kOP6f
hP/7tgQ85tX9H//xryaEf3yGvvtM/2vq2/t7/Md//Pv+r9vgH1M/5a//69f/tv2v//y3/wIAAP//
AwC5CQjfhWEAAA==
H4sIAAAAAAAAA1R5W9OCPLPl/f4Vb723TpWIQNrvDgGRkwmCx7kCVARETiaB7D8/pc+umZobq8AU
Denu1Wut/Pd//fPPv01a3rPPv//5599XMXz+/V/fe7fkk/z7n3/+93/9888///z37/f/W3mv0/vt
Vrzz3/Lfn8X7dh///c8/0v+98/8W/eeffzflpGFN69f9MvIWnnbx7i9m87FBQt6VGfjhmzMj2ix8
XtuLCtWQbNg6XazMUY4gQIF5Vilv+xsarRVgKGGW4qXo7HIpja9K+7jJQIKF3vvT4zo/IT2zJIKD
3kR8UDZ3OB2mgq1fxttsH+f7DBF/JTOXo9Sn7e6Qac8bLYiXZFL6jYfh+dFiKpdZno4qa20Qnwsn
Jm72aMLP0wHN5KJga3mlmgPfnStw4qAi5rJcp+OOdxH4ejqnKprKsto+ywAlO75mj0VvIeZLgYKK
eG0R1xhRz9Bna8BhHhFcmzvh9/12naGVlhyI1Z1qMfiRZSPWNC/mWffanK7HrkBzulaJ+dpuEU9c
PNOKc+aSLXt7Md+CCuixXhvMQ/s+ntLTtQLTmdk079U8Hc5EG6BtxZ5OhMVodOnRhmMjbbB4nHnM
jgaXULzIW2Z0+9ofXX2dgeHNfWIGx51JsfAaKLuLSU79O/WFZWwAUK1uSXCa6zEz6B5Qci0+xJpv
NqkcNKoDu/pWMeOdrGKxPYYXWJ4uIUvczxGJXX/NUX1MGmYLa9fz8/XmoWdFdarZ/tqU9Rm5qHBQ
DLJ/NSESefWsYePomJzh5JrTc4joSjBxZvZ1aM3mbIch7G9Whpvd5l3SFBMKkpVgQqI8KKeo7HPI
5lXE1tYuNCd9RhLtoeCQBVNw7we5cBw0efsNM2vJEJK31SrI2OVJkmqxFxMRKoVXlFFimRR8MdOv
OcrW7wszon6GxGvUQ6imaEV2RaX3PGSNAfMim+PCEq3J4+k+/OKT4Ib6uA52XQKgxwGtbl3VT3sp
5yAqfKNMqkQ5dK43oditA7KTp2UpdqExgV3EjCpzYotJm9YZzE9DTLz5YdtPm8gBWGTxlvjlpi1H
1+0VUMhsQ9HtOKWDWskSJLzwiVFLcT9d/KsO53h/JgZ/b+PRaK8BlII7eMbQ3Z9eindQ7Qc7MWdV
9GKwTl0D32usMvuZ8h1dK2AtpRvxvv3NeKRaSDTznspueYj5/ugcAFddSAiVMp+eWOzNWW8GzLqH
OOZ1X08wfDqd+E4thIiWPICePQ60ASh88VRuBYqKitGhzSEeGfiAZmjPKUjJOp2eCU1gJ/dHHO4T
rx9399UM2p0sEaN6UtRsiazApqtrPL/XL7/polcAi+MjpfJ1aP2ueYMH6vF+weKdBGVVX57a6sjd
gfjbcymmFBkTbIbVjqSn+d4UaHHRYL9e9sQ6VoE51nORraxRH5m1NFxfvAVRoBymjnYcdSkz3IYj
TfJmxD1pYTw1apPBnjxMZhlFUzLp3lDkzosCq6eDXXJV7h20kY8RW3f7k5gehYuhOF57sl0GaTxl
m8MJvU024EWZjf63ngvo5puJHnf6uRSXqahXFy974d/+fDZXX0e1IYd41lzb8uOmIV7JxAypVMdd
KZ7eWlnR8XEmDs2dlJdTVMAPT5z0XonBnvIM7mGbM2e32Zb0YWsZfPGIxtxmPj8TjSJqOjEhSdmg
aSNPDjBFOpEj3jpoYgtXg7I5vphT8b3JVX3TQak8T8QdlLtoM3V/X/VyNrGN/AzReLuPHBYGMunU
VL45Ld+OAt98YOV10sT4GbUMTkbgsetqHfeca1GHJOuCqbAUraex60u/a3Y+FJ1geHAqUKzPAbNv
/qfjy20gapOU/fCVHQ1FRvv6/qRFt7dN8bzhCSX0NjCSxXnKs5c1wSHIbYYfn7f/24/VIxs/zNt7
TSw6AjLKkeOR3afciqruaw76cpGzred+UsG9d4DOo/3Ek9SVvRCqc0HfecLctJTT0S4PhSavU4Wq
0b6LJ+00UXA0vMarRV2ZbcAERtvrfUWcObGR1C1PCRDhb5g1q1bo7V9kBw1tgMiWrfVSvhzQHcqy
PhNval5x2ywdG1ZlssQafbXmrz4AHQ6MPcx7a07Z2enArLSSvp/4Y/7lT3PwEy8BJjTemixAUXtJ
yZq4iWjcIglBSYeR1lJ86wWPRlujWtsR/3acYnZpdQ9Qvk2J85RsfxFLcwupMznDEm7W/jRbvAPU
+vcd2S1VR/B2pgZIuvGI+c8LLvlZKhW4XxeCBItaEuK2f3jIiXFFdvZRpNTOogx2TW6wPemKePD2
NwNgmSUk4u93zIOSJyjtLJ3FC7lOKcbXO6RzY078h7GLxRJqBxL/U2J13+f9uPNHG9hTUslmdUvR
pBPBUTrX58Se7qYQBr0CKh1XogqejHKRxGMAF0lPqSzrSt8eB3MAqVdfxHbOueBmcPVQod8HOuyJ
a47y8pWg50mRSWy/jv3QJo6Bhlo6kKxbm0K+Q65BEn3WWK24nrZDkATgn9OM3k+l2jdrHofIOa8m
uuDjte/YbDhBt61TLK3Tcyz62bKAZq9d6N6sWjGKLWog3Tw8ssGfqRRSYzrQpHaPF33h9lOUrC1I
lV2MV0vVQWOidAnk++r4nc+39KXQyVgdVrsRi6jHJo93nxzdPuqJeMyfUJ9cPEXz/Y5T6fXRBW+d
lKLrpw6Zvc4Vfzq6mgLj0TtiKV5y9JGpASigPGXXbVT67IuPaFk4QGxzJ8zm7mcOrIPsRHzaaT3b
ausKakMKSeDUpsk55xjpEL0YvuuBP7oxPkEgWMqM7B71/JDrGlAlNontuTOzlmL5jprqzllALd3n
ct9VSDmoG+K8zYX4zisN1Cy08Gptlz0dVjZG9fZ9p8rhnaXcd9oGdqoJOKpxi0Sz6U/o7Tgj247n
tRCkevHVvjAz4t9QZn5O83kDcq1T4rERejoritNv3rKg7Iue2muTwvJRlcS6vpt0GpMiQEVsWszx
kSp4Jo823PqCYW22k1OxStQAvvznh7c9X70tA6TreUfII8BiWvimrX2/j4p3MvS//V1NQkZ4drae
/gjN4oRm/WaOlfxzEJPLFxmM90PDDN0rzUl5UBs1he3iZYEac9JO2qBNWvcmNk3f5TR3vEYly9pj
ru2P4otXCVQ3L2Br3ROCX8OWAxHuhv3mH+/mTQi3C5wZNiI7Zevl5qR1IlcICcW+/OPfF0W0+M3D
sB9n+NhBU1guewT8GHPJ9v7mGWX7K0q/88/7PY/Ogr5E4qAuJVQs3hnuNa9Np0nOdbAZ2tL5bmmX
fD4ec7A29gEv8Cfqp81rJ8GX/xILN0+THubtCWbT5oZnGzymfHV71oBPC5sEzgb1zTPQIrjUZE8X
J05RmbuJBCRz38SMNlY8XU0Zg52Aw9zD2++/+bJAj5QnnuWw9JlC3Br5buRiEe+XSAhVv4CYzx1K
z9ba5IfcUWBeKxbZLTZZyXMOCQqxypmnzOxy4b1ain54ve5no+h3EgKUf446Cc4vz+TeLLRWv/ka
WMY8Fd3z6cF7FT8ZuYSWKbt8lcEiHHbMGXZmOfkBOoASFXfmMHvyGUnNA7B16/zxjfE4mFQVt2DO
tuhjICmRDQOi6DJjulkl5USlRIZne8NMX/hDP+60YECv19rGC/deoNFeOPKPj7BM40XcJ/apRvFS
Db/8pS6nTdonYDxnLdkeCg9NGioV9OuHTa2WPQ8P+wjWmkioom2uMd83uwApFjsQommH8hNtpATt
7Fjgj+ooolXf5wCSs2ezrXDnfocmXqwOyv3XT04s1++dBZm5mtP3Nx69HMQdFNe5kptSEH+M7f6O
tI+bM3OlGr2ojsZ3PlZn5hiD50+nQ3CBbzyqktsNfVr2CbU3hhvx/SQ3+dU5a6jYEI2QT+P0o7na
OCiXPxsKLBT9cBIgI6InwH540If7RkHLy7TEalCx+I8PT6s1ZlZjFuZn2gYVyqXTnViO0iKmzYII
zqP1pCvqjj0PjWEGxWanMVzyMh1fIZ9WX35B4fzyfGEp5R2S+x5hjY3ZT694UIrJIetQjeJfvwBs
bYUqX3wRCc6z1U//rZg89NPdNi8/fY1XloF7yhxbAgrUITheV+JjO5vptx8Y7fk65k+00+B4aQ7s
obyZ4FKHclh1QUk2J+/lc6zEF8CH+4O5M0pLrqZZgi6rgLL1++ijyTVaGXVnHrAdgo0pT+4wA+bc
JRK0eRbz98zzIBben15N+2MQR4D6Q0AIxVM6abswXD1Pmown3TPNKX2AjkJBL3SxTu1eqp63CAW4
6oj3duSS//bDrJSS6VWG/U/vlw6Y0cnH2lHgdLo/Ew+V86PBgtvx2U/vg45huV/5mOt9YHLpebVh
vJ8a2odt6AuLrQ14hdaWWa9PLuihSipgKFj99GT/ua6PkqZH2pOYt+4Yj2UfZvDDdyLvccn3947D
9qYYLLLzyuTv4SbDrASPjk2FEH9fwxm0VvNkpj/U6If/mnWMNt96LfpGttUEFlctp/IZxpLXhXUA
x5Ue33l7MQVKPAc5x5fPfvxdrvm7gO9+k7VIrZTr60uNum2VUh5vN/0k6WqFiPsiX76clNPpxQc4
PjKdXdJ7hSZ0fk4ocU9AnKuv+4tio2D4nMs5c7dRaTL/qRvIkNUGI+VG0+7H75sLtehyXPXlp82a
BO58sSfOZNz8YfvsMagJqTHNT5+UX8PnBD9+pmtJFvf7VyahOJrtsTw4BloqhX1HWjnfEWOXMX/M
gnsCX/+IasrtYU7ttGlgqtfjL9/9x43xAYZTU7Kv/hDjDF0oXLru9NdvvKuu+Y+/k2C/mBB7xsMJ
9OPeYU6RMCEW552C5KBrqRffduZYXisP7HabMnd+UNLpGjgWvDeTRwL5Y5vDEGchLOCuMG9QsDkA
m1/QkfsDXbV534t3+7pD9D6u2Pa1jP9Hb9QZPuDlE+98QeZSDvhKPkzPrqMQfNlF6LxYMuZ88VDQ
yNNhjDdLFkRg+eIZDweNbtGTbc+QI36e2Qc4MPvOPHcb+NMm0mcA1rAnxPqo/qTmRw/9/ITO/SzQ
Tx/B9AxLcmhaH02L+3YGb6+8fJ+nC36Weg1to3bP1oEs+2MuMq5JtymiM+rm6FPLex0S4xky/2F8
0sm98fqnn7/8c5l2yoNaMFzXHilEfvwffyzUcovcs3hvchs8DV00aUsSP+Gij9YJRbFbBVSuep72
B368wI8v59v1zhySRIQwQzGnizFa+4vyOnhgyKhhehe80in6bAA6fNnS8aFc0ym1XhGogRWTC7kM
MbtdWwMyEnD244PTOI8vUJqXmm3168mf7tBocD62M7o8LUg/vspFgx5datMfX2X3Ust/9UPHQJbN
tq4qClE/GlRdvW+pOL47A+0qe0V++eFVt6RwPeCATnFQx+N3/eo3762vvuaZrFrQ6iTDf/3RpOoB
0s7Wab59n9BnkbJaVbPIIkYc2LEMTxShU/t5ks2s+vhjX48afPTgyswAyYjOZ7mDvn4lwwzNfCqx
HYZpWNzI1twVMecPUwO6KTRGGPrE4jO0w49Pke03/vQIMw2drGpk7pgVPd8f9RN0iSOY7ye6/40f
AjtZO/Llr6VYVXH3x//I2Y36Xz5/eoJ5dRGgaW1fD3AICpvOonwVT28j1dA8ty9El5VtL5NV5sFW
t1Wih1IupmY81T88w5onbf3BHL0DHPtgYLuSH/zqYE0e+vpFXz5Zx+we2RisbYbITz+Ir/5AyaRN
ON3zZywqPzfQY0wqEmhEQ8Pwcioog0pl/un6Tif3WFOQ8lP/6xdzgPhiI37Vtz/9mLKnt9aQmuxq
sn3ib//3lz9+gKftsCxZpaJOY9J1z0i424rRwN4ddt6gkEA132nxq0f5+Wrx8l1Rf7itvQYupdwx
LE81God3M4P9RHZ0nsV6/Ocv4+vu8/1e6cfvbGjPgcrsdzVDo24qoP3wuX2dPF9a+52N7tq6Ip5y
m/vVhFwKlq/pf/NN+fql6sa7LIgZXtx0nHdpBjw/UvriPhNCvA8WOlGnZvhUXsvx8WgkYN4yxXLV
h6mcPiQDFdvwgmUcaGm7TVoPUmguxPa6V8l+9XP5GCtiLY3WH9WbxFUd7zsW5PugHNytmcNKVA3Z
5k0Z8/dwlP78tuLrv32/ZwZVsQkI+fqZP78N+aBHNJ1reckrfElQy6sZ2/BRLUUqOYMmN9cjSTKX
9IOV7yzEPqnAkk5MwVeKcoBjYVzJdp1vY7HV1jUQS15TrmIHjaA9O/SiuyuV60sff+d1jfJ9fWTf
fjK5fd5ThA4nhqXpapoc1v0Eic9Kym+5aXIn/MxQupCHr94cfP646fefn80852nEbFXFDexjzWXm
9a2afFmRCdZiRb98JYobtZrJ8MVPghf9oqfVR5FhtXl/6LSZZ6WUujMDYoPnf/jfkWJ3AbbuHZxo
/bOkX38ZHdlcY/6eqILdSv+OLitMf/rNH8twTbWHED4h3fgQ0yBKDl9/EXdszMpvfAk0DTpiRd4C
iQTAgijUz+RUz44+Q4tQgefbfpNNQ1exuJdTAV9+y8xl+YyHZD5k0C3UB0a98xJ0be8PsB5fW/Kb
Z+J9aiqgc5vh5XXUyrEoHgVaPY3wp7dNNsaNB996xTN2lFJ5eZ8bcAfL+Os/KXHtGTw29+0Pr1L6
6PsGSubvmX+wi58/X6CPexnYtdQdxJfJ66R965U2eCrKkZyMCuLjSWE7G9187qc0h68fTHS68GPa
jPcazZJ6w3aqo6Cpfm8sTdRvi/lfPivdDiSHarVcYh6EN5MqGsiwTZfVn1+1fFmbAFbB9YrRDWU+
//XfqWVP4rnbwR+V225ALa9n9J0oPWptZzdB3s2uX/63SMdMvd7BuNQV2bh3Q0wnr51Bc7tFLNNI
gsao+9TwAW/x9Q+dWGL3TEYPMfpUgxx9z0cuCbqlpxnBIc3/3g8pBDYs6N6f8usva0jeSCvmhy33
RbrdNeiLv8RoPQm1Z51O6NufZCc9IsS110uBxzMQFB2jk8kPOKshxe2N/c5zpikmCbB+HVDRepXP
50F1AqLORmbv9FrwctceID02iKwX46vkbhGF8MVbts7mnfh8z+cgvj99Ylb6qR89L5r9+UvdTe76
uzGT77DQ7D0tNtdJDNaoJsjn45O5+afy5UV9lcDt1OF7XiDFbdG1F+Tr1zn5nRcxR+MdcuUDYVtT
BKaQzP0MvvwfS7V6SOn74GD01ePMzO5PNElsF8CGHSVCcqhj4YmjBI/GeOBxo/nmGE76ZfXFVyxM
M0fjN39o9dRD5r2dU9//+PS4PfsM2yiIR+/1pKvepC2Vd3VY8vBwDcH+FDlzv/VJ54OQUDjfR3Q4
KswcG29nwPV2ebAw9Z7ix79hu4y2hLinh8kf65EiuNtHtqW5aopLPgt/+vDHJ8w/vt7OghPz6/cs
pXrvFZDLbEMs36clLZywBksjFsN41pQjAxNgdRzvLPjqcfb1Y+GBu4SCHa4Rjx9XCa2ViyA/P2Dq
sVmsxnS2Jp7tP83JfkkKIsZYEvs1Pctvvk+wLZYGfr8r7I+owSEsQrojOP4/AAAA//+knUuvo8CW
pef1K0p3Sl+BMRBBzXiblwlexrbUagG2MWCMDUQAIdV/L+Fzu9WDGnUPM5XHacdjr7W+vc1RDVr7
FYlhMPENUjtS63QIB+HXbwlYPsIDMTSTgW5sAWS+fHvYoc+hhBuvCjittpvlU/aXn3/deGIMVkZe
LKgwg49ssKbJCr5dLxXRkSeOrCbNfEsPFZAV7kH8pJ7ouOnF3/q7M3ALSt+lAS/s6/TrZzUbj/sC
ai8ScptOBX/+y488Hfd1jgAd6ksApWU9I09yPwk9HIMKMnIWoKN7QcPcrHkF5cVXkbvxOOzM8h1G
oKiCp7rHgMSky8Tt/vz1s3frRZDgxqf/8scQFdLlpw9Iu9bvYVY7gZM3/cU/fjKnnyaFbPF4/vpR
+hqOmQCrrkkxB9dqoMvN7aBwzVyk+fyrWK44FP78uV6kqTffu68EbYd/kAPzOVKq7WEOZFdZA6np
npRq5dRLJyJLSL+HD32iUWbBLDzdiPl0xmT2YsOA8uHrYRziyltO9ScETJctwW3Xtd7f/fr1l7W7
Nw3b+eFhCIUBi1u/ergduBHuEov78aFmuZZtC37+StUYRZ9D0S1/eYN41WrQZYZUg//4TQX85//4
f5go2P33EwW5Ob8xOGi1txjfJAeXPA1JfPk8QJuUxxDwxH0RBJVDwTO9oAE9igyCJFwMU62opSzK
/g35X1x4c+HwGDos42J20XbJUsV9Dw/iyKKDpEpgOU82A1O+jQPXPDH6tKxlD9Fk6UQLZLH4Xl+X
FoBXbZJgCeNhoQrIpPg7KMhbFARmlwstmQ+smOi++gaLDtcOepqxBCv/0gd6yKUe5vhVYrE4h8k0
vJkO8OpRI86tONDxiCIM3PvDQs6d/xRL5ns2wLMQknRIXgC7bBXK4lktSbBPP2CeFCcFhcBWAZOM
j2Zc460DH7krCjqQJTTSCA/mrq+IKYT91vGaOSDBZdw6sCLF4s7N4NP2duQ4j4Y3dUyWwluU2Hga
AJtMXh2H8vn5EgKaxmMzDHLqwxORNKJWR8Xru3TKofjkI8xh56MTuisM+IzhlxRRlSafuRhD+NXW
AOlR+Un6092G8Nl/Z3Qg473pzWcfQ6kgV6SGtzqZp89FAFBacuSzYl5QYGi5KHOtRZxBFOlyERsB
mirnkMv5xgD8eokc/EjVTLRXkxczadIe2iA+EhvsU7ooT1GBynrUkWo+woKGn6cE/dl4oGjwRX1l
2SqXn2GRBLJGbs0c8rwPG2/3IfreWb1R+KwuNM8VQg5vVvr0NZoQsruxwXOOzvo8MscWmCkUiFld
igbbi/oFy/KGwV4UWvpdZL2EKacB5IMDbsgglwFoT98TQuRNh1k4PUKpaJIcc+dCLObxoZcQytmC
HNm4FnPGiRn8XO83PJewTZa79ahANAwOOvj6VCyy02XQPvcNcQxbBOvZHyt4/5gcUauM98YYHC6Q
2vvw77xTdEIavNvqE8NxjYfZeLQdOPnhBV2StAczvh58GNn6A5m3+pKQ3/lJLz0mWngpvNk9vVfw
keoZ+bkfDfP7Y4fw0jhWwDPCRGfk3Er4bQsRw7jVBmK/FANaI23Jtr8FceJKkDn8rpCJp31D7qa/
SvuTxAbMpcuLtY3uEPCBERNLF3hKG9xCyLixj5xBvILR/Wpftg2fb6RxyquYL/pFgaVxmpBTs2xC
rMbIwaEI9EAYTkMxfw1HADVVOGIdzoROxX2FsD3m+2AedxdvUc5DB1jq+EjR9m6x9Gf3DmSY9iiY
7xaYKe+XUKuCBR0c9kTpKdFsML7rE27jz3EYlAvO4NTVPlH8ZgYYdlwGMym0ELKKhc7F/dqB793O
UQLHeiDHwothfzoLCIkQ0XXinobM19EJ8wLHDyMdWAUyDyYmBtD1YbaESw9elXZFniO8CmIRkgG+
Tk7EvzYFpcWtD+Dx/s5xCFxOn7/hyIMuW1fiMhJN6EcPa/nYRk8S8EOqD+HAXkTBkHhk7BbB6z/T
9Q4JVXii1oArxuF9C2DylE7E0ERCe8fxeYleUy8YlrVo5uiIv5ALPzLuuUup04y/lb/Pj7Q+fA9z
URELHHUUBAzOUTGazyqGzggEovS6Xwy3p3iBcL49ifuIVMC/H7sWfpVgjwzhbiZz6EU2rLLKRYnU
ezo+hDoH3zwPgxpGX32+m4wtDUzQIvt8u9NlLsYY+nJzwLsKmc2sTFILLI9EAXulzNA/718fRkf3
SFzzdNfpeI8Nub1QgxiNpnprd6ssiLtDEWCGamAQ2cWGCjEScinPYkPO5yIFCz9+0bZ+HuVLtge+
NWNisqSiy7KmX9gFzxTpV+OS4BY5d5DfFQNp+zMp5jZMfelSvQnGthGCFYhJBYuzeCRGyhf6XPue
AiQYpEidRKvAp8/Vhlf56QQwZ+RiLncOA/cN3yC3l+1iMc9cAAfwOW7r96STiiJO2t4/CYLork/4
2VeSWNouOlSvjC7FcBKAsJMdhC4X2Vvmoo0hOHRPcnju64JaF4YBt04OkDHub81cs5Umu9nxg9Qu
Pyaz6AoaOCvNK6DP081bUzBn0O3GlpyXd6UvteLc/+q9J1+boneYfQZcs4+Q0qzvBEeNH4MC1Pug
MuJRx7UrhLAdsgJpnT97y8qwHbg3V4y0RzbSZYG1IVU71ULK6+h4i36wDdik5gHP8l5N6ECDFTC3
C0AmeK/eeL4YGDKJqSF7930PnZD6NXilvY+KMWh1ehGuNtTW1UbehZ2KcQ+vKazGICQoqq90qRX1
Lp8R42/6oyW7j2CH8ADjjBz8UffWMWlieKm0c8BC5ZDsif5xYRXyBkLG45PQqSIdgBHzCt7fSNZH
lwsNiOIEIXRVVzAfkGpJE3tSSbCIdsLdxcQGTpBDosRv25uI1OUiJUpEdK6ldB2TIQZ1BJ/ksL0e
1h0Gwjk1HaRKkKfTz0+E9j0MBBmMyXI0py943vYAmfLwGZb0IEJYGueJIFWZi0VbXzbs87Ij28+D
btMjgIzTgIz5qDRzKw6zuNVHdHzhVV+a6evDzW+gK28qOj0GVQqjvsqRY+avAqd2koIoDGUsCqAp
tn8fwCC0P1je3RHt8ljMpcPe6dGx5PbNis/wDo7sZ0KaNXLD/GbnL/h2bIiZ+W5RMjr7QDoc4weu
XsePN8+vSwqnBu6C+ZOx+jTxN18AwPfImWrPAZ/ifhb3ii8Gk1dp3to/lxCa355BHvfowactdEWO
z1WElG/vNovfvldY2V1HXP4TDONtnH3pOUsBUeRgGFa4qCsUkE+QbtcBWLtbbwErYQhxzNws9mNq
fOHObwwUMFSjY+Z9VtgLck3UInkVnzaUO7D0i0U8dc4a8tEvFfTyLEAmbp8DfX/HHI7v6kTcZesI
iLtmlH96YCZ8BNbn6VFBdn7tyEHFkd5Lx2MN86KcyFbvk/VVtBcp7Fg/GMEBD3/+plqEM3GGuaHr
t9gpoOVxH7yXOfPWLol7eSxtm1zNpiiWk4tKIMOsx6+CURp+Ug0DPmchIMone3g9w4W+LFp3AwX2
ZA17mK8zdAuRII05xsM82oUBY38qkbfdp7nVxRjEEe9hYfc9NDttnWzYkfcbnybg0TV9n+5QZm9n
4j3DVac4s1OocqcPOiqqkyy9v1OgqzwbhOSipwt3vIeQ/QKMn7vnKcHvr6dBYOousmHlgk3ffGBl
20RWt1bJehPsHL6fNk9cXSqTubO1O3SL7Iwbt7M87tP4Gnx9xS/Z/PNWf4wYvnbjg7jC1HnU3cEA
KtYZILVpv/qyw6kF3s14RI+9IBSjw7ApOD/fQjDfcKiP99Dr4P5yzwL4xcBbd+YkAfabZUiR989k
Hh/eHe6hpRB7YFR9PnauJdZU44jrXXfJtCZ5DR/WXQmkAAkDdtKTAm9sMOC180OPKpcug4+IOwZt
0fTeegn6QCq044HoIFLoLpATHh7ZYQoYc98k6weXATSOrkfQJ++S1VRfAbgzfo2cWbUpVSbHB14X
Ufx5jeMweRefgzR4ZkSLvtawt4Fwh/A6HYhzP9KG4suNgyeVeZCA6KY+mWcYAJtISrC7zP4w+rjg
gcqLCvnz55tfhKM0GEQFL3/gmsnmYamvJ4zF5z5ZP621wnE+e3h/ri2PO0jYBuyjeWLmKphgmVzB
hfH3o5CyvLIeUUk2Sune+WKmc77NQhX652+QylMFYGkUWrgsL0isUFIKrkh9F47qKSXHWQ8SStmq
klORqOh3H6fNz0mgO9zw99KmdB5TXoPsC/UEuY0yrHrq57/1RvGD1Roe1+qWJ3gnGMHcJovnfQSh
snSE3CtfFXPnnhm41S9i+mdR/+b2AIFsdojYIHh4mz4q0DiSJpDG8llM9lyF8uYXiKJXirc+Hy0D
hzBRUXAVTNqzntLLeRs1yGg4HyybXkNtGq7Ee10q8Jk+UgzGlmGQEjFrQltwEKCgnR+YEZ/7YpXp
OYZBoUvIlLnHgPvnEoN51aYANuQJ5ussrFDt2ZKYx1UaaL6mEqRBkwV7lJ+LaX4tGLq6ISFVLy50
nc1bDNYdfiJPaipv7mQI4cI5CdHzTKdcQ7IUPgf/gPc9XwzLXeQqeHdbIeCDY+KtObQhjFNGQkqO
9jpOgZBBxzD1oD0Gvr68XuFdRk55JYUjmMleqcEM4/7wCXanKBlWpY4vMFzPV+IwmUF3pZ+s4E6l
D3HHUk0+j+W7wiSIv8TFFwfMx06z5FH6GMhvrFEfd4LtwsCYS3LCrTpQ1h/Xv887n25DQnJYp7Kg
rgcsb4RwNvgUQlE9Zeh4nMhAS76zYHEGRzwnV0p/eV2u3mZNjCRuiu/EM53UDmmBzueh1IdGkPKf
XyGqHteAlgptoereKwxhPSdrPEVY9l/RlxzjByjGJGJ5MIdMjrnvN/Q2PZrhvniZyLFDe+Cu5U0Q
VGy4RP9az2bZHxQfsk6sYxn3YzMFh2cqlw/7SWJr5Jo120ELbPUEeV+qFZx7IjMomE9HtGt8GqZA
Ljjg1Mobc+lkejRzhRzO90LDS5Xx+vw1VAHyxH4RG+0ImE73bwa/+qnDa7GnYHnc0DYBcpTR7zzS
nx9G6+yiw3jihnmrh0KMYhqIJ1fXf/kE3j71689PjlueB47V58jkd12xAPTtIJ+eF6J6o9yQve0y
8KPPZ3RoDQQ2fpLCX5487u6ErsewLKGoSxNyPxZTLO9HGUCxnOqAaY+avnyaKYebPyXOS8/A+ubC
8ueHsaQ0cTGvsehCwgrWdn/iYqkYc4Q8x4/EDB9vOuIr8uF5AAuWDXrSF9G7XgCHNRvPvT4mVPRT
V/4us0lS7dDqE/XsGYylawfrg9UGXuuGDtZ+mJNk76z6OvRnCP1vfkEHiG2du+CdBZ98l+Kv+IgA
TVcjBErH8395eQlmQYDw4M3EFK53fZwUNZWjMJYD/lKjYqTDXgEbLyLmsOcKgushlDymCbGEnq23
ZGzlSr/6LnViSGkn6x0oZ39HXHtQdX6nXy7iVj+IyruD3ivXB5b2yaknph00Hi2SfJv6eAnE5Yyw
wD/+sfk74poMBdN+fYVgy+vBth4FvUhdL11udxYFz4qj69wlFtzWK9idpE9C13uNgX6tnwEf6XxB
+8vRB7t0rfF2Prz1PNUpbLwwwvvNvy3hTjPgUT8GSMUaTMaodirw8+/9Tl0AuUZnQ6LZzKEk239p
Z11uHWj2eEHujc2SzZ8ZsOW8CPfjfPRobDQV3PIpOb5MmIy1rytQXjVCTJodi/0vny+n7/nPT33F
zPbh1TheMbv589VenC9wpNBAt83/YksscljmOg12zG2XLM7hMv54WMCN+D3MyDndBbtRZhKc5r03
EyOuf3wLHy7yga50f/Bhlx4L5EfAB3NYHTnJUGKA144BYHmmjAukBu6RmRidR0RWtKG13gakL2YO
usfqu7CUKhys7/fSUCGdhN/9QoegHxraObiFS3ckyD07VB9dBRjgp4/aDXjJnn+bFmx2Xo50qfe8
nYqunAQNVQ2GjcdRUQtG6eefWePxKb4oDl05azuFHDzAJKSTvQ4essOJHH2g0z2rPVLwEvYBlr/V
ja7CPWLgcNEb3G9560u9rw17UInIuShWsW8E6QKdM1qROcWZt8gOzuA1eMZEX/A8bHqs/PgfsSqX
SabH8p3Btp/El71OX3716NriNHhdDjxYxcwO4Od9UVH2ej0A5bILAz979orXEy2baft80L3frICC
qKLrqxgvkq0yt+31LJ0kwcyAJ0555NyKN21/PG8OYU6saBz1dVinHPDX+wMFgW17s+MYHNTechK8
n/s6mV7viYH75Nxjtl3mAZ8eOoYPp9vyQVMkNONPd/hu8BHT3fEzrIEsB9B7jQXSH8uroL50zKHy
kV8EPcExwW8uvIO5+1bISCdT7wcwGyA0BRE5J4gBzXtUQsnSEww3v4/Hm4DhxgeIH0+X5i+vbPx2
462OPosj+koGlV4k2HgLT3DLQeYBYwxYRh32kfbmBUkTWnQx+3oYX0uuQQBos+lVWIDP2BuwGbN2
03/F40R3VuSEpDLxNz2jfFiOINnpBtHPH74hmVIzEMURIta9s4Z9i2oexuc6IupMnGbZCc9aUo8v
RLTF1fTZ5S4WnPSHhA4HZx1wG2WMqGeyiy+a4zT0eRM4KNzcBHPHvUp3Pt75kL0zzsaLxoI+uU/w
0y9kdfuhWG9nrYP+93LZ9HTW1/WupnCC9Bssww7TWXtV3C/foEJ9KwOt1qkCwVDtkDGUgNKTDUeY
ZLW9+csKkNY85XAXH72NH0vFeEUShKzhnTANaTIs8CooMDBPXABel4rOsSBKsIJLj/y3sAezqNQd
JOWOI0pdFWDKZdmCFZuxRCsCxluAsNpQd/QOMwUXJPOhaBX4FvOEqMpkNPQgciv8yNYB2T+eRkYB
/+ojlnQJJnNHSQ1gGd+3fPHUd85hm3gDeUMM+AZJj25CCtNK8gNI+9OwMAmYAZRoTpD66XQa+XIM
nevikINqgmLd4V0JtTg6BmTjYxPsYkaaPj1AFn7kBZUavwYBY/gogIEx8DtzEmBHFIQuyM/1yeB6
Hn6X1UToGZ+b2V7TC9QmQyXndjKb7wBXTm724/LnFz7yIeQg8eMS75d35S2tkfdQqCIdN9cJ62uv
gDuQ9ocuAHmOAX7zEwQ7h52I/3L1QZxfIoanXeugzU/ru2Utv7/6FOwy/VH89BxAVrDJXace3W3n
Tya79kiKzzMD4yHKOhj0uYU8VEI67pmOh7MXJ0R7sPWw/Pobwo51ArrVp+EanS2IvtWIGbKbKYnO
GoY7/2kQc7bFZMXetYLb+uBffR43PZAujWehQ5quHq296Atl9nEOVvvAF3itMh6Sr6+g9Lh//ur/
9m0IoP3yGvjxL3gYaBHUzHEdWr4oKpAFOYOchKjJLpdlQ4qWc0g0fEspFdKXBIvbOyEee/IoX9mw
A8HtFRGX0CGZk7l3oZ3T+MefAdXyWoPXK3hgTsonuh7yKAR2vsRBdt4mju+Gq0kq86mxxDYfb/Iu
BgeJM5mYXNUYrK81neVfP0Vfz13yx1vfx8YLfvVnRfHFhScQIuQm39yjMmNZcMi7baKl4hL6Wnkb
srN2CwSpTJIpCfXxd16J3z6PdD6i6wg6vdeR11qngprZpwS2v8PBaes/rEku1ZBXkUaOJyZNZgl7
GbCJoPzxl33pOQp83zWLKI0TDSuy3VGyvCkibmDVzcj5nADwqdbJIT60A8mZPQ/t87dB2uXDgvlD
MAPjiZKN9zXe55FLF6jRUxXso3tA1zd3KYHU1QEu0qM6jFs/AX4edkOOQfYq1vkquPDbXkXi9DWi
dOm4O1wGcUeQI30p5bKQgcLNTshh6wdhxj1g0OKHi+cbnr3xM11L+NOnI82FBAdvn4fLqT+Tm1fV
+ljuzyWwpMkm9nMF+gc/q1r65VeLfTbNOnEfC84figJ51nEyw5fYwqBJLuTgHL/e8stPGz9Hips1
yRSqLwvC1yElRn31EkqHYw+j5RRi1m2qYUrldtMfNcF77tYUhFUcHuAhcJC5aySwsuqO+fGgXz9W
X93heAGho/ZbfY+HdVJ9C0TYr4gr2e9hNffnEe4ceQrmHYkH8vNrVXQt0eFcWzrnPnY+fAXbNwby
8eTRg/VYAft4PoMvvnzoqAiKArf+KDKFK6OT4rEbofK5HInfKxZoT05nwcAta3Sb2IyuRJBCcDG+
Lt4Hvdfg0pdd4IHLEx29qvbWC9nzcDAkjvg7fZ/godPuID6oGTqg6Fn89ZN/+qw0ztJgmZ5DuL5n
mdg/v4ke5R165rFCW7+NLsV904v3ymJ4Zlt9Pkr8Csk3UDb/FjXzpreAw4pN/DPbetPrdSnBRbMo
CWxjpsT0Sw1u54toPL7+8lUL6/P3HSwtO4CFOzejPMoLRZqwRt4ojocebHwcY8Ha0V9/C1Y73cL0
alyKabvPv34xOlNNHZbNH4FeyF3ipcdng/lcWWHtxzlueo7X56Q8xrC6hyMy3Of9l39bIOQdDHZ4
Og/0+Aox9ED+3Px1mRBririfX8fSWKoF7/leCLY8h6WNr3LAACv88TF1Ertivb6xAVS3rAiSXq8G
87Now41/ksPe2zdzrcodLOJRI5n1avUtz7Rw6wdinn3qA35+1lz+/5go4P/7iYI+cDE57HrT48sH
6wKZtgdyJ6IN6AsXBuw0zyA+LD2wL86OC2UW7YkbsfuGpsFphvK7tYOX581gLI4OA0+dpOL5fW4p
zZlyBDx5e8GSRddh1b92DpVr2SHz5k10csDXAq2d3Ynt9U8wfep5hHoSacSu67wgbybmIQDdBRkI
jzo+2hMPERYk3Le1COYXlzBQfLQrOrT9uyCPewJBvjYKsRrz0SyW963AeLct/CRRpg/B2dNAcLJC
dMzLQ0HvTGmB7f2QLPK6gjhESOF8W0Jkf82hWEthqEHKETW4TqbqUXyPZnhcrBQ5RR2BEaXnGL40
JyBG6e0bspjtCirlbCCz8o7N8viaGD6Ek4WCQJyGcfJwLFHvNeFFPSsNf2XZFh4zEOH31FsFve+V
XnZlayaewRKw2s/EBgTBNpCU2vdw0E89lMWcJcqXi4s5OM13qYprB5mGFyULIzkGRDtDRQVg34Du
T40El2XRkRFgD5AbTlNon+MIuQ57AUs0VDPUrmUcQFkU6XrtR0tSmqQgzpu9F+R2UFZof0UWi61Z
e+t6qULg3YwBi6d6bcbJ60JQtWcFHYbeAvTFJC44p2OPzlrv0zV/XjJZOK4mXlru401Qci5AVe8P
YiSeOHwH4ZPB6bVNYJDyTMk+uJQws56YHLmy0eeLcWJA0E8MMXZe6g1MyV/gNW5QIPW1SflP/2zl
27dukXHFbkFu9zKGT9ejyCtZ31svywWDrnZZ4uflUizj8giB/TQtpLtR79E6KDrYHVgYAIfFdBrq
+QJz/8QEfNnHzXSuQS1Ne2YJxhtbF4u8pDNch/caTGPZFljcW7HEf9YELzfu21B6GmsAjsU1WLro
rI9i0Zbw+m185D7Y0zAjWR/h084gOhx7L6HiqengScAC8VcRFHM9vCE83ZsdQnw2equz5AL83O2W
OFON6eoteQvl3YXBcijuPSKfagZe4FiQs2eKydjJSijvo9lH0T5KAb3d0xCm2VNGpulFw/JyDQj1
290hWsJpCd+RXQ/36G0F6yPCwyqiFbMolxhi9Pg9rOMD9rCesyEoa1Gms3EzS/Bl7BM6HPoBrPqS
8OAijDnR2uhI157IGdg61gE7ZNMwkwJrgC3QG/kv9ulR82BUINCAhw7fvmuG7z2/ALArYszvzHKY
8lWCwP+Cc8BsHUJq4ccKO8mFwfgtMZi84YPh4RwXAa97vT6pGs/BT20/UbiL7gXOhPYODbVUUQHZ
tz6jo87J0x4uJNCy2zD7p3mGyUxccuzEBKyQSD6sYfZB6LoNBCeXlgFIkkSiUu5QtDS9MtAYwh3m
Le9NqXY2JJBIUoTsvfnRl8PwzeDwlk1ywCanj7C9lAC+uzjYbev99sisyTl33uNhYL/J+mCZLyzX
esTCt77q6xvtagmw7RUdFjOhU5lbMUSOcSDqxNn6er6MKegyR0GeUtfePHldDHaf9YbhUh6TJfH6
HhTbd2bdN5sW6/3BcOCS4jtxOXYt1omFd/Gbu1ekx5EFVoaIAlSv9xLZp17xFkFyNThYdhKIR7PT
f+cDWOf4hdyg/uq0fhELfhj3QUzB+9BBZEJFlt9ICkS5Hv/OG7S9OCbaGPnNZIJ6lJ2PxfzV79WK
iotUuJUc7C5eAJY6P6bwwVeI3BURNfSMb7F0jIwrSo7RG9DqbcdgmKiM0zfuk1VgJemnL8jR6lOy
fi+fGmpJ5Af7q7kfKDlNNjhbTftXnxZj5S8Q5QJDzMab9Nk9iYZYlFgLWowtQNXHUsFqdXhyvIg7
QE8HV5Psl3nA4q/eCbsBg7WBOgkq0R3224QEEFALyaYHyZKttIUVX5nI+vRzMR53QgtvQf1F6o37
DvN3wBgcVPNEtHOEwHKVrBGO00KRdeh3dH5NSi3T5D1goa6lYijfiiRb+7hCJu99i/nwEu9guNsh
uesi0Rf4VTP5WuGEuExdN/Rt4hQAva2QBrDQ4F89EJ1iDOAoQg8/+saG+33HBvSId8Nq5rYGlee9
RRrFIqU0uBrSkrxZ5Kfl6tHDwfehJt6P+LmPUjqH3NkAOhuCQJ7F2FsL9eID+OhSpKX4ro8LF1tS
63onhFpRafbh2cUCy6IGeSl7LNqL7JbwWaYCuRrmW1+b/lv/7Z+RegJdOEnrIUFMu60PActQzznU
h5gNfvdrNSTFhS/eMZH+igydbPUUvuw0RYEiooHarHCBu2UtkG+VFMyyEabQupolOrrivlndKJ6h
JpZHorJR0iwfyfehcQhFFLBil6xHNc7BtRwzEuzF9+/8hWC/b1mUDt4O4GiJevjMaxU52/le9q7r
SvesviPdiHo6xMwNwt1uLgNJZXOPuG9vlKqsdrFAa8HDuwfIof6IFOQsbNnM3k6QIHO6iMh7lFJC
nwfbhr5ptUi5nLuGnu8nHzoodgJr8dRifN5UA5ov8xVU5/M7Idt9gNKnuGHq4hNY0qLPYdSTKhhq
1isWvNwhSMbpiBBLL2AKi48G4056/K33xKl3G6TjpBM9w9ywRPmBg55pYKJIHKFYOlsuzC/YI4eL
eS7WRqg78MYuRe6Z5QG2+66FFcxk3K+m641oN4e/84b3oG8TvNUzsAKokGR7f+T+emP4ZuUvsR6e
UdAnLjD8am4ZrCu+Dr/Xh/2bbYgmRt+CXnEJJXcFHyyw5gFgbPc8TO/SMVi2/aMGuygw7SSP2Fpf
g1l/rQb0FqMnfsM+B3oJbrYUYNEgCjk3Az7aL06WPtcbQoQWBSZ91csHFN8COuFwWNSiCeTuwYp4
P/VdMgpc5MKzMo7EZLyPR2nJQumTu00wh+c3XWTXCWCXO2qw2+7nukM0lR9rFZDyd/62/QIqjSJk
Ee9JafZWORj5U4c2/+LRMigriCnToYNnisWSeFUPH9XZQQhkno5Pl7GHg7Q9Q2Utm2aWi4aDp05Q
kQ1qnq4LohBchTHc9Najy9s1vtLm14iqnKtkafOjBtUhSQKOemmzfpAc/PSXBEYm68vueYJQf8cM
OYTmZZjP7d0SU0ayA0E0++Gjg0EB5EqvmI96zhufXNpBvnkfSZCJ45/+gpP1FHDCeTewdLEYw6Gz
A2LUHg++DctoYPu8OOjED52ioV9hmzkpUbLzW6e03DOifCxMpG8/PxsnSQF516jIPOMKfCT1FkDy
opcAGqwJONiGd/gKsziAeRkVi7iccui9jA/xGtZr1v3bqqD2LENij/WlWe0ed0BXSw8FlojByICm
h8cahMGO7y/eYmq8D+znwQqka90P82+/45TkwZpxtb7MX92HOVMxyPp4dbNASc3hT99oHr0aKkO+
hqv33mORsLJOaMkywFvBA+9pbzb0vrd7WAW1T45xaQ+LmKsC8ByLEHXlDjpv97j9+SvMVKLbjH2a
VFAz7xlxcW169Ha2OaiI9yd+9hHfrJF6XaGmlieSR+x52MOSx9DfWQ8ME9bQd7lGLeCsIsXSu7YG
zr/5PsQenIg91GJB1bfByGEucORimWExG+YCYTGeyJ8erq1d53I5nl/IXdh4wIelCEBqkwPmiacC
bgYvHnLR+sVwFYtkPUehIG/+GBk8NgfqnvUv2F4fuSWbeRMXZT5MLWl7BkqfNSNbNDX8Jmzy8xt0
H+3dCpo3841hxdb6HKUZ/MsHyerdC+ocdAF8a/tM/H05NpNRMxngvFdD9BnPxXpWQw7C6eoSxeLO
xQi5sJKb2LkhZIkGXbvL14VZilfkp+IDUP2x+PKvY/LLnzjsXxks+WoiLijZAhuuHYKBlTVkfPAB
LKxrC3D0WDUYOLYvVhlJBvj5sVTBRzDLaZjDUzVuE3aeU9AxyDUYRBYiNmd+Blq9SA5fmeMG8MWq
+nxrTy5M/cn+1f9hrIx0hNbrUAT7h5mB+XpzU3jEYkC0ilOSvUPmVDZRvASwFeVixG3e/9038cE+
mmHAuSu93+yE0Cmbad+nRQ2vJc6QczC7YWqkowvrNh1JmbE63a1LlsIGZo+AV/qsWK41CMBvfw6d
eUrWy2O/wuPRKIMLMb/FXKXpCg0ab+bAVIolHaq7vNVzlPGeUkx7V3Nh6Z++xO3rF/36QqfABTDu
dl9fgGz5X+4CT8Mcj18NHV9TBeo2G5ESnPtiNmUzhrEltMjOa9Cs5fOiwcp15D/9JfleDcHmH5G2
Rh4gAxMH8NGe3T+9mqCaCvCVZkmwl/p2y4M3BoKivRGVj7iBXM/OHa7LKmJxVx+bX36GF6aJMc97
VYEFVhLEZ5kJwe6MFTrejZsC0MmyiHnu5YI8zXcIU0sIydYRarZ6EUAtSXy8X3uz+Lt/7OE4ILP3
xmJmvGEG0rFotvt01Of3pARQcoqaaDmWk/H4Eip4uTdncujNlK6hMOVAfnRuEDSZAOiW12R6W1fk
fmpL7+Vi4ODm55GqnJViL9zDADg3gyWHp8knC1hOBoxzqSJBnBUedfHDlSpcH5C9dbBWiZU6uCAY
EqXlks0vtTVMeuIHrJx9BzK/RgH4mVggzeOahtpIqODQucHPPw4LmyuMfDfO12B/63swTavgwjQl
FnFeZl3MAXe+/Pwt0faRC9bTZfwCbxUfAR96nfdXX7R3YuMq51K6zMu9B9qrjAK6ekwyPm+O8Vdf
/VGE+jKs811OUhISPxcfOjXORif9/EtglgrgD2qSye7N2hHjiR2dvz8YHujy3UDKleMampy1HBB5
ORGXr3UwNpPNgV9+QLHYNGPDlSHkozUjqsSZdHlKxxI4H4NBXsJir53TOJYO57AgPiknOpjBGcJv
Z18whZHiLd3XX8EumivMPuiNrvw5mIHpxXOw/5g7fTlLSAGqfL8Q5XM2Emo+BAGMJ8pjeeNJizN8
NSHqhA/5+dWt3jG/+4gXLyo8aj5mCbRfLwzYheZgdmT/Czpsyyj8cKu+5K5Vw1tQffH+0A+U5nsn
Bqf7c0d8qfSTvk7LO2CSTsM7FbfegmKIgb47cMRCngV2H8kIpPtaX4I1jkKw+gLWpEATPdSkUVfM
OM07eG3HFJVKmTZ0B9lZugdVhU6T5yUb31jBTTnXwfzgEjAzNRsC92VQ4m18hByCcw/RYilYbkTO
owUuv9DVQ5UYM7YSar99BcrPq4ZrJYo3v7DE8LgzTuhyNrG+cn2vSFn97JH9MT2dM6ZjBdTXvUDH
W/n21kiNVrg7rU9Mk+jtrfWD8cEvv5Uma+mEhYwPN54QbPxsGDhzvINyPL0CJhKnYj1HF0na8kcg
RCYG9EDmHqJagMhZzUr/8+PkzNT45XkhpSpaSnm3zAVCb7HSx0dbcnDzK8HpgJtk8N9eLh28uAzq
KJobypRMDofcRcHL7B8FfZjvVtj8JQk+ojMsQfFMIYyuPvKjck1eqsbwcP+5AqJ3OPbwWb3wUIyK
78Zf6i1PghauiLGQb7AmxTJaLTharoMMFhsDXZhrDH/54s+/F7UkwAeuInQw+rFY20t9h1Et9eTQ
9L23GlEyShvfwfziPZPl5PUprLH3wjvdi3VOfUk5FJzVQI5Xc8V0AlUAM6bpUGCUVTMd4+0BhEPM
YjkR+WbsjvYFMuxxwlLN7gqM1NiCQlRwBF2yuVmH/hODiBE6FEbcDuCRcBhKoK2JRqJRXyErxfD5
9XCAN382j20O4emC5YCrvQzMjzbl4fvBEqKFXL09iWjFEDzaOwmmbO81cxBdwNNOIUIfWnrtzog6
aJJwxG3p7Qcy3nMLfA7sPfiMpkKJRwQNbDwD2aLZN/Sw9w14yZsMtzb2h3lnRK0czBMkfsK23sZX
MgiatiDl5h+mywpiyO1fN6LI0U3/+WvQjZlFVMBZHg/QeoFUXqdA1OvTsHeR4MNPbjcoirnR+8v/
p+5JiTPXwQDOZ2f+8TOk7LnZm21zSX8dxGD+cmuyfKLzCpcXNYK90fsJBZDhQQ7HAwn0Ui12xTfI
BGexIN70PFmpUBmw+To5UTd+vLrPmIOOc9DRAfb6v/giv6xRwKM+bWbWuCi/P2OhrIE37tMoFZ3F
gMTvWLXg9uk1+8tz01E8FyvXVwpcXouBhdycwOgd/TuwzYMfrFw0JPOYxgLcL/MBRXO0SzDeH/if
P//xQPqrF1A+dEd01ESBYq7vNYjsSUSBVj692TweL+L2RLZAMGqG/vIRsEhc4++9fjeLJDkY7pet
g7hnARguwcmF2TiSgN+ZcMCugDN4sgQLM4F4HBZ1aEIQSEAnfivKCU6FdobXakyIccYu5byjcYfw
eEVY2JuOTszgwYCOZblA8OtbM3/bIpacJrRI4ZUl5ccH94WalwTb+lbNOgkfBXZcapCD1LfeOA+v
GaKPoZFI5l4N3tYfiEvx2vz+21sNyXahdOgGhHbZQHEgvLD4XJ0RbefJm8tJnUGAgRH0W79jddRC
gfxpPqOLXPPFx9HkVtp4APKiEiYz9FoDKqf7iwS96BTzgysFSJPXgHQuehaYsNAGv/0VffMFJq1m
+l/eJp7PBg1PzgiDUji1xClMw/vxJ8iwaCLIzdaC58/BCrnzqw7WO6fQXZUfv2Co7SNSIfcq6GBO
I7xCHGHJqr1kx0c3CSSWlP++wVFQfe9juDvNTxzhaEfHhktjuJiLs9WHcJgD7nGBk0h7LO3r1tv2
L/3jJd3Wn5mrSXXhAqBLtDQKEyqU+xSq4v1MdBpp3iQutxye788nMiOsDnwsTIb043E6jWoPF9El
hvYK5C0/68Me76YQjJ6sIuPlZQO18fkO188KMGuJLViZw/EuCqTbI/UeCcn6JbIGaztbSdCJDlhv
lyGHeM+8iS2adsOHz6sE9eMBBIvEvejsTn4HmenCI1Xjgo3vzAJwYiBg1s3i7Rmb7B3o75AJBqdW
vX3OpBje3PqDxZvZDPMxPbewZ+wP8jW2K6ZVvZdwOw/EyLDblC/vXUNCYbnxXC6ht4O9QtcFM95l
HinmxiMcaIzsTayNly1H8CyhLpcGOpx6d+MJbQ/nM7yQ9ORdvSlcYQU77Mp43fweRcH2DNVcYLBQ
mlMxRrKX/+WFxYuA16vyUfjlaXKSvR5wr5tSwozDE978nj7Ue2W7z0TETJ1dmvnJlR04K3gkWsE9
vb4f3hr88X1PZt/F8nJ9Bm58k/z4886qGQWa55AE7Jk+9HW/Dzox7oRHsI5YKtrk5oVQbFpCtBP3
BBtP4WGRnlZiNN5Zx+uliiFGDCbGHr8o9YKH9uPzwd42Rfo8DN8UvsY0JJbUY32tEeOCZ+wtGz/b
0emuSXcY3aWBeO9S1PvnzbEgc2h15CR1omP2sXCAeXQK0lYsNvPa5tqvvxh8bvWSLCdQ+XCNVoYc
yr4f6BmfYphYQo6igesHUjPFHUbc9AjYVNT1jTfY8nRmeLxK0XcYLnu1A44eesh89NAb3ZNoAcZr
jYBD2Pd21SppcCkgwszGK2fIXSro7GMNqUt0GsbQnC3Y2FlPEMgG7+en4MtPT0j3o8NAvIPewce3
CpE+Rlqzml/7X/XD+5SXhuyCcIY3vmqIdo1Ise73Vguzalzw12EvlHb3QgH6ZPJIHyK9oNXrnf/y
PXJT9pz8/CJA4bTHn1sdFaN9EnOw5Umk+txIu4NaZJA86ZmoR27SccHuQ9By2QUdYcYkI8NdfAhP
xfZMT1EtPj8+vvEgzLVeViy7XKvlO19dUT7XRrP/8dJt/5Fle4eC8rtRkT6M/cAyLRtK4rd7B4+1
DojKRLQgA5P70JEtiWgyvniz4I34p6/EevSxN4YnwYZp1sjI2/L+ssvdSj6YhwwhkV6bNp70FLZl
muNair7NMq2CDdvYS4K9aebexlsZeBPOecDYYpDQKigEuMhUxUwvfgrin/UM8vu3g9sz/tKxPSoY
3uLqTdSNr6+Z0JZQaaICaRrXNqvbd/EfX9oJ/b7BB7VIwa8fvL/1NuBsU0x/+RADs5SHhfmqmizq
LYeQl8UDjd/aHRbGaBJdiz4FLoWmBvtPATDYsX2zlG4QwF8/odj4Ga/mdg83voHn69kCKzkf8P9+
RsG//fu//8/fb0Ho+tv9tQ0GTPdl+uf/GRX4Z37L/8lx/D8J//fbEvCYV/d//Me/hhD+8Rn67jP9
r6lv7+/xH//x7/u/aYN/TP2Uv/6vv/637f/6z3/7LwAAAP//AwDmi7xYhWEAAA==
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 7b8693c3fe087743-LHR
- 7bd02f926f51dc93-LHR
Connection:
- keep-alive
Content-Encoding:
@ -354,7 +353,7 @@ interactions:
Content-Type:
- application/json
Date:
- Sat, 15 Apr 2023 19:25:55 GMT
- Mon, 24 Apr 2023 17:49:57 GMT
Server:
- cloudflare
Transfer-Encoding:
@ -366,7 +365,7 @@ interactions:
openai-organization:
- user-iy0qn7phyookv8vra62ulvxe
openai-processing-ms:
- '110'
- '175'
openai-version:
- '2020-10-01'
strict-transport-security:
@ -378,7 +377,7 @@ interactions:
x-ratelimit-reset-requests:
- 1s
x-request-id:
- da07a850f69de94f01587228396b9036
- 65b18c2ab828f8b407f94720e7dc95db
status:
code: 200
message: OK

View File

@ -88,3 +88,32 @@ class TestWeaviate:
Document(page_content="foo", metadata={"page": 0}),
Document(page_content="bar", metadata={"page": 1}),
]
@pytest.mark.vcr(ignore_localhost=True)
def test_max_marginal_relevance_search_by_vector(
self, weaviate_url: str, embedding_openai: OpenAIEmbeddings
) -> None:
"""Test end to end construction and MRR search by vector."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = Weaviate.from_texts(
texts, embedding_openai, metadatas=metadatas, weaviate_url=weaviate_url
)
foo_embedding = embedding_openai.embed_query("foo")
# if lambda=1 the algorithm should be equivalent to standard ranking
standard_ranking = docsearch.similarity_search("foo", k=2)
output = docsearch.max_marginal_relevance_search_by_vector(
foo_embedding, k=2, fetch_k=3, lambda_mult=1.0
)
assert output == standard_ranking
# if lambda=0 the algorithm should favour maximal diversity
output = docsearch.max_marginal_relevance_search_by_vector(
foo_embedding, k=2, fetch_k=3, lambda_mult=0.0
)
assert output == [
Document(page_content="foo", metadata={"page": 0}),
Document(page_content="bar", metadata={"page": 1}),
]