forked from Archives/langchain
Add async support for HuggingFaceTextGenInference (#6507)
Adding support for async calls in `HuggingFaceTextGenInference` Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
This commit is contained in:
parent
456ca3d587
commit
2e024823d2
@ -4,7 +4,10 @@ from typing import Any, Dict, List, Optional
|
||||
|
||||
from pydantic import Extra, Field, root_validator
|
||||
|
||||
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
||||
from langchain.callbacks.manager import (
|
||||
AsyncCallbackManagerForLLMRun,
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain.llms.base import LLM
|
||||
|
||||
|
||||
@ -26,10 +29,13 @@ class HuggingFaceTextGenInference(LLM):
|
||||
- seed: The seed to use when generating text.
|
||||
- inference_server_url: The URL of the inference server to use.
|
||||
- timeout: The timeout value in seconds to use while connecting to inference server.
|
||||
- server_kwargs: The keyword arguments to pass to the inference server.
|
||||
- client: The client object used to communicate with the inference server.
|
||||
- async_client: The async client object used to communicate with the server.
|
||||
|
||||
Methods:
|
||||
- _call: Generates text based on a given prompt and stop sequences.
|
||||
- _acall: Async generates text based on a given prompt and stop sequences.
|
||||
- _llm_type: Returns the type of LLM.
|
||||
"""
|
||||
|
||||
@ -78,8 +84,10 @@ class HuggingFaceTextGenInference(LLM):
|
||||
seed: Optional[int] = None
|
||||
inference_server_url: str = ""
|
||||
timeout: int = 120
|
||||
server_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
stream: bool = False
|
||||
client: Any
|
||||
async_client: Any
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
@ -94,7 +102,14 @@ class HuggingFaceTextGenInference(LLM):
|
||||
import text_generation
|
||||
|
||||
values["client"] = text_generation.Client(
|
||||
values["inference_server_url"], timeout=values["timeout"]
|
||||
values["inference_server_url"],
|
||||
timeout=values["timeout"],
|
||||
**values["server_kwargs"],
|
||||
)
|
||||
values["async_client"] = text_generation.AsyncClient(
|
||||
values["inference_server_url"],
|
||||
timeout=values["timeout"],
|
||||
**values["server_kwargs"],
|
||||
)
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
@ -171,3 +186,69 @@ class HuggingFaceTextGenInference(LLM):
|
||||
text_callback(token.text)
|
||||
text += token.text
|
||||
return text
|
||||
|
||||
async def _acall(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
if stop is None:
|
||||
stop = self.stop_sequences
|
||||
else:
|
||||
stop += self.stop_sequences
|
||||
|
||||
if not self.stream:
|
||||
res = await self.async_client.generate(
|
||||
prompt,
|
||||
stop_sequences=stop,
|
||||
max_new_tokens=self.max_new_tokens,
|
||||
top_k=self.top_k,
|
||||
top_p=self.top_p,
|
||||
typical_p=self.typical_p,
|
||||
temperature=self.temperature,
|
||||
repetition_penalty=self.repetition_penalty,
|
||||
seed=self.seed,
|
||||
**kwargs,
|
||||
)
|
||||
# remove stop sequences from the end of the generated text
|
||||
for stop_seq in stop:
|
||||
if stop_seq in res.generated_text:
|
||||
res.generated_text = res.generated_text[
|
||||
: res.generated_text.index(stop_seq)
|
||||
]
|
||||
text: str = res.generated_text
|
||||
else:
|
||||
text_callback = None
|
||||
if run_manager:
|
||||
text_callback = partial(
|
||||
run_manager.on_llm_new_token, verbose=self.verbose
|
||||
)
|
||||
params = {
|
||||
**{
|
||||
"stop_sequences": stop,
|
||||
"max_new_tokens": self.max_new_tokens,
|
||||
"top_k": self.top_k,
|
||||
"top_p": self.top_p,
|
||||
"typical_p": self.typical_p,
|
||||
"temperature": self.temperature,
|
||||
"repetition_penalty": self.repetition_penalty,
|
||||
"seed": self.seed,
|
||||
},
|
||||
**kwargs,
|
||||
}
|
||||
text = ""
|
||||
async for res in self.async_client.generate_stream(prompt, **params):
|
||||
token = res.token
|
||||
is_stop = False
|
||||
for stop_seq in stop:
|
||||
if stop_seq in token.text:
|
||||
is_stop = True
|
||||
break
|
||||
if is_stop:
|
||||
break
|
||||
if not token.special:
|
||||
if text_callback:
|
||||
await text_callback(token.text)
|
||||
return text
|
||||
|
Loading…
Reference in New Issue
Block a user